Performance of extended surfactant and its mixture with betaine surfactant for enhanced oil recovery in sandstone reservoirs with low permeability

被引:9
|
作者
Zhang, Guoqing [1 ]
Zheng, Yancheng [1 ]
Tian, Fuquan [2 ]
Liu, Hai [2 ]
Lu, Xiaobing [1 ,3 ]
Yi, Xiao [1 ]
Wang, Zhengliang [1 ]
机构
[1] Yangtze Univ, Sch Chem & Environm Engn, 1 Nanhuan Rd, Jingzhou 434023, Hubei, Peoples R China
[2] Changqing Oilfield CNPC, Prod Plant 11, Shiji Rd, Qingyang 745002, Gansu, Peoples R China
[3] Oil & Gas Technol Res Inst, Changqing Oilfield Branch, Xian 710018, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended surfactant; Betaine surfactant; Interfacial tension; Wettability alteration; Phase behavior; Injection Enhancement; DYNAMIC INTERFACIAL-TENSIONS; WETTABILITY ALTERATION; PHYSICOCHEMICAL PROPERTIES; SULFATE SURFACTANTS; GEMINI SURFACTANT; ETHER; SALINITY; EMULSIFICATION; TEMPERATURE; BEHAVIOR;
D O I
10.1016/j.molliq.2023.123228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carboxy betaines CnZC (where n represents the carbon number of the alkyl chain, n = 12,14 and 16) and extended surfactant C16P3E6S were combined to assess their potential application for enhanced oil recovery (EOR) by investigating the surface properties, interfacial properties and emulsifications of the single and compounded surfactants. The results demonstrated that four surfactants with favorable water solubility exhibited better surface properties. Among them, the mixture of betaine surfactant C14ZC and sulfonate surfactant C16P3E6S displayed a synergistic effect in reducing interfacial tension (IFT). The solution with C14ZC mole fractions of 60 % and 50 % possessed an ultra-low IFT (10-3 mN/m order of magnitude) at 10 % NaCl whose emulsification rates of oil in brine for mixtures exceeded 90 % at 4 % NaCl. Notably, the emulsion droplet diameter was smaller compared to other salinity conditions, indicating that the combination of C16P3E6S and C14ZC enhanced emulsion stability, correspondingly ultra-low IFTs at both the oil-emulsion and emulsion-water interfaces. Coreflooding experiments revealed that the depressurization rate for the optimized surfactant system (with a molar fraction of C16P3E6S/C14ZC = 2:3) with superior emulsification properties, effectively abilities of reduced IFT, increased capillary number and lower adsorption loss was 26.7 % and its EOR was 20.4 %, confirming its favorable displacement performance and potential application in medium to high salinity reservoirs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Experimental investigation of new derived anionic natural surfactant from peanut oil: Application for enhanced oil recovery
    Hama, Sarkar Muheedin
    Manshad, Abbas Khaksar
    Ali, Jagar A.
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 395
  • [22] Improving the interfacial performance and the adsorption inhibition of an extended-surfactant mixture for enhanced oil recovery using different hydrophobicity nanoparticles
    Paternina, Christian A.
    Quintero, Henderson
    Mercado, Ronald
    FUEL, 2023, 350
  • [23] Performance and displacement mechanism of a surfactant/compound alkaline flooding system for enhanced oil recovery
    Shang, Xiaosen
    Bai, Yingrui
    Sun, Jinsheng
    Dong, Changyin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 580
  • [24] A novel high temperature tolerant and high salinity resistant gemini surfactant for enhanced oil recovery
    Hou, Baofeng
    Jia, Ruixiu
    Fu, Meilong
    Wang, Yefei
    Ma, Chao
    Jiang, Chen
    Yang, Bo
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 296
  • [25] Investigation of the enhanced oil recovery potential of sodium cocoyl alaninate: an eco-friendly surfactant
    Tackie-Otoo, Bennet Nii
    Mohammed, Mohammed Abdalla Ayoub
    Owusu, Esther Boateng
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2022, 12 (10) : 2785 - 2799
  • [26] Characterization and oil recovery enhancement by a polymeric nanogel combined with surfactant for sandstone reservoirs
    Almahfood, Mustafa
    Bai, Baojun
    PETROLEUM SCIENCE, 2021, 18 (01) : 123 - 135
  • [27] Implementation of a high-performance surfactant for enhanced oil recovery from carbonate reservoirs
    Ahmadi, Mohammad Ali
    Shadizadeh, Seyed Reza
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2013, 110 : 66 - 73
  • [28] A composite system of amphoteric copolymer nanosphere and betaine surfactant for enhanced oil recovery application
    Wang, Xiujun
    Zhang, Jian
    Hou, Shengzhen
    Huang, Jiaqi
    Fang, Shenwen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 718
  • [29] Advances in enhanced oil recovery technologies for low permeability reservoirs
    Kang, Wan-Li
    Zhou, Bo-Bo
    Issakhov, Miras
    Gabdullin, Marabek
    PETROLEUM SCIENCE, 2022, 19 (04) : 1622 - 1640
  • [30] Characterizations of surfactant synthesized from palm oil and its application in enhanced oil recovery
    Saxena, Neha
    Pal, Nilanjan
    Dey, Swapan
    Mandal, Ajay
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 81 : 343 - 355