ProMIL: A weakly supervised multiple instance learning for whole slide image classification based on class proxy

被引:2
|
作者
Li, Xiaoyu [1 ]
Yang, Bei [1 ]
Chen, Tiandong [2 ,3 ]
Gao, Zheng [1 ]
Huang, Mengjie [1 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Affiliated Canc Hosp, Dept Pathol, Zhengzhou 450008, Henan, Peoples R China
[3] Henan Canc Hosp, Zhengzhou 450008, Henan, Peoples R China
关键词
Class proxy; Whole slide image; Metric learning; Multiple instance learning; Attention mechanism; TRANSFORMER;
D O I
10.1016/j.eswa.2023.121800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The histopathological analysis of a suspected region is critical for cancer diagnosis, treatment, and manage-ment. Histopathological diagnosis consists in analyzing the characteristics of the lesions using tissue sections stained with hematoxylin and eosin. Classification of digital tumor pathology images, called whole slide images (WSIs), is a great challenge since WSIs usually have huge resolutions while lacking localized annotations. Multiple instance learning (MIL) is a commonly used method applied to pathological image analysis. However, most MIL methods often focus only on the global representation of WSIs, ignoring whether the category labels play other roles in the model training besides being a supervision signal. In addition, feature confusion is also a problem that should be avoided for the analysis of WSIs with weakly supervised methods. To address these problems, we propose a novel algorithm of classifying WSI for cancer diagnosis. The proposed model, ProMIL, uses only slide-level labels rather than localized annotations for analysis. There are three innovations in this work. Firstly, we present the concept of class proxy which is the representation of the intrinsic feature of each category, and plays a key role in guiding the training of the model. Secondly, we design a novel WSI representation learning module that utilizes a multi-scale feature extraction strategy to represent each patch in a WSI and then aggregates these representations using an attention mechanism to encode the WSI. Thirdly, we design a metric-learning-based weakly supervised multiclass-classifier by measuring the similarity between each WSI embedding and class proxies. The proposed ProMIL can effectively alleviate the side effect of feature confusion, and carry intuitive interpretability and scalability. To evaluate the performance of ProMIL, we conduct a series of experiments on several datasets of WSIs with different types of cancer from open data sources. It can be observed from the experimental results that ProMIL outperforms most of the compared methods and achieves better performance on a various type of cancer image data for classification, thus suggesting the proposed method is suitable for classifying different categories of cancer rather than a specific kind of cancer. Therefore, it is expected to act as a general framework to be extended to more cancer diagnoses.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ReMix: A General and Efficient Framework for Multiple Instance Learning Based Whole Slide Image Classification
    Yang, Jiawei
    Chen, Hanbo
    Zhao, Yu
    Yang, Fan
    Zhang, Yao
    He, Lei
    Yao, Jianhua
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 35 - 45
  • [22] CAMIL: channel attention-based multiple instance learning for whole slide image classification
    Mao, Jinyang
    Xu, Junlin
    Tang, Xianfang
    Liu, Yongjin
    Zhao, Heaven
    Tian, Geng
    Yang, Jialiang
    BIOINFORMATICS, 2025, 41 (02)
  • [23] The Whole Pathological Slide Classification via Weakly Supervised Learning
    Sun, Qiehe
    Li, Jiawen
    Xu, Jin
    Cheng, Junru
    Guan, Tian
    He, Yonghong
    arXiv, 2023,
  • [24] Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning
    Li, Bin
    Li, Yin
    Eliceiri, Kevin W.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14313 - 14323
  • [25] Iteratively Coupled Multiple Instance Learning from Instance to Bag Classifier for Whole Slide Image Classification
    Wang, Hongyi
    Luo, Luyang
    Wang, Fang
    Tong, Ruofeng
    Chen, Yen-Wei
    Hu, Hongjie
    Lin, Lanfen
    Chen, Hao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 467 - 476
  • [26] Pseudo-label attention-based multiple instance learning for whole slide image classification
    He, Jing
    Wang, Ping
    Cai, Jingwen
    Tang, Dan
    Yao, Shaowen
    Liu, Renyang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [27] Hybrid multiple instance learning network for weakly supervised medical image classification and localization
    Lai, Qi
    Vong, Chi-Man
    Yan, Tao
    Wong, Pak-Kin
    Liang, Xiaokun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 260
  • [28] TPMIL: Trainable Prototype Enhanced Multiple Instance Learning for Whole Slide Image Classification
    Yang, Litao
    Mehta, Deval
    Liu, Sidong
    Mahapatra, Dwarikanath
    Di Ieva, Antonio
    Ge, Zongyuan
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1655 - 1665
  • [29] ProtoMIL: Multiple Instance Learning with Prototypical Parts for Whole-Slide Image Classification
    Rymarczyk, Dawid
    Pardyl, Adam
    Kraus, Jaroslaw
    Kaczynska, Aneta
    Skomorowski, Marek
    Zielinski, Bartosz
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 421 - 436
  • [30] Patch-Slide Discriminative Joint Learning for Weakly-Supervised Whole Slide Image Representation and Classification
    Yu, Jiahui
    Wang, Xuna
    Ma, Tianyu
    Li, Xiaoxiao
    Xu, Yingke
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 713 - 722