Inverse Spinel-Structured Mg2MnO4 Coating to Enable Superior Thermal Stability of LiNi0.83Co0.12Mn0.05O2 Cathodes for Lithium-Ion Batteries

被引:5
作者
Yu, Guihui [1 ]
Luo, Bi [1 ]
Su, Shilin [1 ]
Wang, Qi [1 ]
Ji, Weijie [1 ]
Peng, Dezhao [1 ]
Liu, Zihang [1 ]
Wang, Xiaowei [1 ]
Zhao, Zaowen [2 ]
Zhang, Jiafeng [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Natl Engn Lab High Efficiency Recovery Refractory, Changsha 410083, Peoples R China
[2] Hainan Univ, Sch Mat Sci & Engn, Special Glass Key Lab Hainan Prov, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; Mg2MnO4; Ni-rich cathode materials; cycling stability; thermal stability; NI-RICH CATHODES; ELECTROCHEMICAL PERFORMANCE; ENERGY-DENSITY; LINI0.8CO0.1MN0.1O2; ENHANCE; ORIGIN; LAYER;
D O I
10.1021/acssuschemeng.3c03460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni-richlayered oxides are commonly used as cathode materials in lithium-ion batteries due to their high energy density. However, these materials suffer from rapid capacity decay and inferior thermal stability during charging and discharging, caused by intergranular cracks, undesirable side reactions, and irreversible rock salt phase formation. Herein, we propose a facile surface engineering modification strategy using a Mg2MnO4 (MMO) coating to improve the cycling performance and thermal stability of Ni-rich cathode materials. Owing to the high structural stability of the inverse spinel structure of the MMO shell, the MMO coating acts as a physical barrier, protecting the particles from electrolyte corrosion and inhibiting intergranular cracks, thus maintaining the structural integrity of the MMO-coated Ni-rich cathode material during long-term cycling, even under harsh cycling conditions. Our electrochemical performance tests confirm that the MMO-coated Ni-rich cathode material demonstrates superior cycling and thermal stability, achieving an excellent capacity of 188.5 mA h g(-1) after 200 cycles with a capacity retention of 92.7% at 50 degrees C. Notably, the pouch-type full cell displays outstanding performance, achieving a capacity retention of 86.2% after 400 cycles at 50 degrees C. Our work offers valuable insights into the development of Ni-rich cathode materials for promising applications in electric vehicles.
引用
收藏
页码:15282 / 15293
页数:12
相关论文
共 47 条
[1]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[2]   Evolution and expansion of Li concentration gradient during charge-discharge cycling [J].
Chae, Byeong-Gyu ;
Park, Seong Yong ;
Song, Jay Hyok ;
Lee, Eunha ;
Jeon, Woo Sung .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes [J].
Du, Ya-Hao ;
Sheng, Hang ;
Meng, Xin-Hai ;
Zhang, Xu-Dong ;
Zou, Yu-Gang ;
Liang, Jia-Yan ;
Fan, Min ;
Wang, Fuyi ;
Tang, Jilin ;
Cao, Fei-Fei ;
Shi, Ji-Lei ;
Cao, Xiu-Fang ;
Guo, Yu-Guo .
NANO ENERGY, 2022, 94
[4]   Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries [J].
Erickson, Evan M. ;
Li, Wangda ;
Dolocan, Andrei ;
Manthiram, Arumugam .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16451-16461
[5]   Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control [J].
Fan, Qinglu ;
Lin, Kaiji ;
Yang, Shaodian ;
Guan, Shoujie ;
Chen, Jinbiao ;
Feng, Shuai ;
Liu, Jun ;
Liu, Liying ;
Li, Jie ;
Shi, Zhicong .
JOURNAL OF POWER SOURCES, 2020, 477 (477)
[6]   Surface Degradation of Single-crystalline Ni-rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid-State Lithium Batteries [J].
Guo, Hui-Juan ;
Sun, Yipeng ;
Zhao, Yang ;
Liu, Gui-Xian ;
Song, Yue-Xian ;
Wan, Jing ;
Jiang, Ke-Cheng ;
Guo, Yu-Guo ;
Sun, Xueliang ;
Wen, Rui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (48)
[7]   In situ surface engineering enables high interface stability and rapid reaction kinetics for Ni-rich cathodes [J].
Guo, Wenshuai ;
Wei, Wu ;
Zhu, Huawei ;
Hu, Yanjie ;
Jiang, Hao ;
Li, Chunzhong .
ESCIENCE, 2023, 3 (01)
[8]   Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating [J].
Guo, Ziyin ;
Zhang, Xiaosong ;
Wang, Mengyuan ;
Shi, Siqi ;
Cheng, Ya-Jun ;
Xia, Yonggao .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[9]   Electrochemical Performance and Elevated Temperature Properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 Cathode Material for High-Safety Li-Ion Batteries [J].
Khollari, Mohammad Amin Razmjoo ;
Azar, Mojtaba Khalili ;
Esmaeili, Mehdi ;
Malekpour, Naeim ;
Hosseini-Hosseinabad, Seyed Morteza ;
Moakhar, Roozbeh Siavash ;
Dolati, Abolghasem ;
Ramakrishna, Seeram .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :5304-5315
[10]   A method of increasing the energy density of layered Ni-rich Li[Ni1-2xCoxMnx]O2 cathodes (x=0.05, 0.1, 0.2) [J].
Kim, Jae-Hyung ;
Park, Kang-Joon ;
Kim, Suk Jun ;
Yoon, Chong S. ;
Sun, Yang-Kook .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (06) :2694-2701