Existence of normalized solutions for the Schrodinger equation

被引:5
作者
Deng, Shengbing [1 ]
Wu, Qiaoran [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
COMMUNICATIONS IN ANALYSIS AND MECHANICS | 2023年 / 15卷 / 03期
关键词
normalized solutions; Schrodinger equation; Sobolev critical nonlinearities; approximation method; mountain-pass type solution;
D O I
10.3934/cam.2023028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we devote to studying the existence of normalized solutions for the following Schr <spacing diaeresis>odinger equation with Sobolev critical nonlinearities. ( u = u +R ju jq 2u + ju j p 2u in R N; RN juj2dx = a2; where N > 3, 2 < q < 2 + 4N, p = 2 = 2N N 2, a; > 0 and 2 R is a Lagrange multiplier. Since the existence result for 2 + 4N < p < 2 has been proved, using an approximation method, that is let p ! 2 , we obtain that there exists a mountain-pass type solution for p = 2.
引用
收藏
页码:575 / 585
页数:11
相关论文
共 22 条
[1]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[2]   Entropy solutions for elliptic Schrodinger type equations under Fourier boundary conditions [J].
Benboubker, Mohamed Badr ;
Benkhalou, Hayat ;
Hjiaj, Hassane ;
Nyanquini, Ismael .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (04) :2831-2855
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659
[7]   Multiple normalized solutions for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Thanh Trung Le .
MATHEMATISCHE ANNALEN, 2022, 384 (1-2) :101-134
[8]   Infinitely many solutions for quasilinear Schrodinger equations with sign-changing nonlinearity without the aid of 4-superlinear at infinity [J].
Khiddi, Mustapha ;
Essafi, Lakbir .
DEMONSTRATIO MATHEMATICA, 2022, 55 (01) :831-842
[9]   Normalized solutions for a coupled fractional Schrodinger system in low dimensions [J].
Li, Meng ;
He, Jinchun ;
Xu, Haoyuan ;
Yang, Meihua .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[10]   Existence of normalized ground states for the Sobolev critical Schrodinger equation with combined nonlinearities [J].
Li, Xinfu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)