Accuracy of expectation values of one-electron operators obtained from Hartree-Fock wavefunctions expanded using Lambda functions

被引:0
作者
Hatano, Yasuyo [1 ]
Yamamoto, Shigeyoshi [1 ,3 ]
Tatewaki, Hiroshi [2 ]
机构
[1] Chukyo Univ, Inst Adv Studies Artificial Intelligence IASAI, Nagoya, Japan
[2] Nagoya City Univ, Nagoya, Japan
[3] Chukyo Univ, Inst Adv Studies Artificial Intelligence IASAI, Adv Collaborat Res Org, Toyota 4700393, Japan
关键词
basis set extrapolation; cusp condition; Laguerre-type basis function; one-electron properties; significant figure; VARIATIONAL CALCULATIONS; BASIS-SET; ENERGY; HE; CONVERGENCE; ATOMS; CUSP;
D O I
10.1002/qua.27246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accuracy of the expectation values ( < A > ) of one-electron operators is examined using Hartree-Fock wavefunctions expanded using ? functions. In this expansion, 150 terms, then 149, 148, and 147 terms are used for the s-, p-, d-, and f-symmetries, respectively. The systems investigated are He-Ne and the Group 18 atoms of Ar-Og. The one-electron properties investigated are the cusp condition (CC), the electron density at the nucleus (?(0)), and < r(i) > (i =-2,..., 9). Convergence of < A > is examined by increasing the number of expansion terms (N) up to the given limit (150). The number of significant figures (SF) of < A > is counted by comparing the calculated value at N=150 ( < A(150) > ) with the extrapolated value < A(8) > . For He, the SF of CC is found to be 26. For the atoms under consideration, the SF of CC is approximately half that of the total energy (TE). The SFs of expectation values of the other properties are also smaller than for the TE.
引用
收藏
页数:13
相关论文
共 36 条
[1]   A Fortran 90-based multiprecision system [J].
Bailey, DH .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (04) :379-387
[2]  
BIELSKI A, 1980, Z NATURFORSCH A, V35, P1112
[3]   Highly accurate numerical solution of Hartree-Fock equation with pseudospectral method for closed-shell atoms [J].
Cinal, M. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (08) :1571-1600
[4]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[5]   ACCURATE HARTREE-FOCK WAVE-FUNCTIONS WITHOUT EXPONENT OPTIMIZATION [J].
DAVIS, CL ;
JENSEN, HJA ;
MONKHORST, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (02) :840-855
[6]   Generalized complete orthonormal sets of Exponential-Type functions [J].
Demirdak, G. ;
Sahin, E. ;
Erturk, M. .
CHEMICAL PHYSICS, 2023, 570
[7]   A MATRIX REPRESENTATION OF THE TRANSLATION OPERATOR WITH RESPECT TO A BASIS SET OF EXPONENTIALLY DECLINING FUNCTIONS [J].
FILTER, E ;
STEINBORN, EO .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2725-2736
[8]  
Froese Fischer C., 1972, Computer Physics Communications, V4, P107, DOI 10.1016/0010-4655(72)90039-2
[9]  
Froese Fischer C., 1973, Atomic Data and Nuclear Data Tables, V12, P87, DOI 10.1016/0092-640X(73)90014-4
[10]  
FROESEFISCHER C, 1972, ATOM DATA, V4, P301, DOI DOI 10.1016/S0092-640X(72)80008-1)