Additive-Assisted Electrodeposition of Cu on Gas Diffusion Electrodes Enables Selective CO2 Reduction to Multicarbon Products

被引:23
作者
Chen, Lei [1 ,2 ]
Chen, Jingyi [2 ]
Fan, Lei [2 ]
Chen, Jiayi [2 ]
Zhang, Tianyu [2 ]
Chen, Junmei [2 ]
Xi, Shibo [3 ]
Chen, Baoliang [1 ]
Wang, Lei [2 ,4 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[3] ASTAR, Inst Chem & Engn Sci, Singapore 627833, Singapore
[4] Natl Univ Singapore, Ctr Hydrogen Innovat, Singapore 117580, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
copper; additive-assisted electrodeposition; electrocatalysis; CO2; reduction; C2+ products; OXIDATION-STATE; ELECTROCHEMICAL DEPOSITION; COPPER-CATALYSTS; DESIGN; FILMS; PH;
D O I
10.1021/acscatal.3c01815
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incorporating electrocatalysts for CO2 reduction (CO2R) into practically relevant reactor architectures, i.e., gas diffusion electrodes (GDEs), is crucial for the development of future CO2 electrolyzers. In this work, we investigated the additive effects of Cu electrodeposition onto GDEs and achieved improved performance in the conversion of CO2 to multicarbon (C2+) products compared to the conventional GDE preparation methods, such as spray coating of Cu nanoparticles onto GDEs. Specifically, we prepared GDEs based on polycrystalline copper (ED Cu), acetic acid (AA)-derived Cu2O, and lactic acid (LA)-derived Cu2O via direct electrodeposition. We compared the CO2R of these GDEs with that of a GDE prepared via spray coating of Cu2O nanocubes. Under the same testing conditions, LA Cu2O demonstrated the highest selectivity toward ethylene (similar to 60%) and overall C2+ products (>80%) in a flow cell, outperforming the state-of-the-art Cu2O nanocubes. Additionally, LA Cu2O also exhibited improved stability at a high current density of 300 mA cm(-2). Experimental results indicate that the enhanced CO2R performance is due to the optimized electrochemically active surface area, abundance of grain boundaries/defects, etc., on the electrodeposited Cu surface. We believe that the electrodeposition method developed in this study could be a cost-effective alternative to the expensive sputtering and complicated spray coating processes for practical CO2R applications in the future.
引用
收藏
页码:11934 / 11944
页数:11
相关论文
共 66 条
[1]   Structure and Stability of a Copper(II) Lactate Complex in Alkaline Solution: a Case Study by Energy-Dispersive X-ray Absorption Spectroscopy [J].
Achill, Elisabetta ;
Vertova, Alberto ;
Visibile, Alberto ;
Locatelli, Cristina ;
Minguzzi, Alessandro ;
Rondinini, Sandra ;
Ghigna, Paolo .
INORGANIC CHEMISTRY, 2017, 56 (12) :6982-6989
[2]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[3]   KINETICS OF COPPER ELECTRODEPOSITION IN CITRATE ELECTROLYTES [J].
CHASSAING, E ;
QUANG, KV ;
WIART, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1986, 16 (04) :591-604
[4]   Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons [J].
Chen, Chubai ;
Li, Yifan ;
Yu, Sunmoon ;
Louisia, Sheena ;
Jin, Jianbo ;
Li, Mufan ;
Ross, Michael B. ;
Yang, Peidong .
JOULE, 2020, 4 (08) :1688-1699
[5]   Boosting the Productivity of Electrochemical CO2 Reduction to Multi-Carbon Products by Enhancing CO2 Diffusion through a Porous Organic Cage [J].
Chen, Chunjun ;
Yan, Xupeng ;
Wu, Yahui ;
Liu, Shoujie ;
Zhang, Xiudong ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)
[6]   Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO2 Reduction [J].
Chen, Jiayi ;
Wang, Lei .
ADVANCED MATERIALS, 2022, 34 (25)
[7]   Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes [J].
Chen, Xinyi ;
Chen, Junfeng ;
Alghoraibi, Nawal M. ;
Henckel, Danielle A. ;
Zhang, Ruixian ;
Nwabara, Uzoma O. ;
Madsen, Kenneth E. ;
Kenis, Paul J. A. ;
Zimmerman, Steven C. ;
Gewirth, Andrew A. .
NATURE CATALYSIS, 2021, 4 (01) :20-27
[8]   Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J].
Choi, Chungseok ;
Kwon, Soonho ;
Cheng, Tao ;
Xu, Mingjie ;
Tieu, Peter ;
Lee, Changsoo ;
Cai, Jin ;
Lee, Hyuck Mo ;
Pan, Xiaoqing ;
Duan, Xiangfeng ;
Goddard, William A., III ;
Huang, Yu .
NATURE CATALYSIS, 2020, 3 (10) :804-812
[9]   Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene [J].
Chou, Tsu-Chin ;
Chang, Chiao-Chun ;
Yu, Hung-Ling ;
Yu, Wen-Yueh ;
Dong, Chung-Li ;
Velasco-Velez, Juan Jesus ;
Chuang, Cheng-Hao ;
Chen, Li-Chyong ;
Lee, Jyh-Fu ;
Chen, Jin-Ming ;
Wu, Heng-Liang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2857-2867
[10]   Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO2 Reduction [J].
Dattila, Federico ;
Garcia-Muelas, Rodrigo ;
Lopez, Nuria .
ACS ENERGY LETTERS, 2020, 5 (10) :3176-3184