Principles and challenges of modeling temporal and spatial omics data

被引:31
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [31] Big issues for big data: challenges for critical spatial data analytics
    Brunsdon, Chris
    Comber, Alexis
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (21): : 89 - 98
  • [32] Combining Spatial and Temporal Properties for Improvements in Data Reduction
    Fulp, Megan Hickman
    Biswas, Ayan
    Calhoun, Jon C.
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2654 - 2663
  • [33] Weighted Machine Learning for Spatial-Temporal Data
    Hashemi, Mahdi
    Karimi, Hassan A.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3066 - 3082
  • [34] Nonparametric Variable Selection and Modeling for Spatial and Temporal Regulatory Networks
    Aswani, Anil
    Biggin, Mark D.
    Bickel, Peter
    Tomlin, Claire
    COMPUTATIONAL METHODS IN CELL BIOLOGY, 2012, 110 : 243 - 261
  • [35] The burgeoning spatial multi-omics in human gastrointestinal cancers
    Liang, Weizheng
    Zhu, Zhenpeng
    Xu, Dandan
    Wang, Peng
    Guo, Fei
    Xiao, Haoshan
    Hou, Chenyang
    Xue, Jun
    Zhi, Xuejun
    Ran, Rensen
    PEERJ, 2024, 12
  • [36] A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change Trajectories from Multi-temporal Satellite Imagery
    Liu, Desheng
    Cai, Shanshan
    ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS, 2012, 102 (06) : 1329 - 1347
  • [37] Recurrence network modeling and analysis of spatial data
    Chen, Cheng-Bang
    Yang, Hui
    Kumara, Soundar
    CHAOS, 2018, 28 (08)
  • [38] Dependency-aware deep generative models for multitasking analysis of spatial omics data
    Tian, Tian
    Zhang, Jie
    Lin, Xiang
    Wei, Zhi
    Hakonarson, Hakon
    NATURE METHODS, 2024, 21 (08) : 1501 - 1513
  • [39] Severe testing with high-dimensional omics data for enhancing biomedical scientific discovery
    Emmert-Streib, Frank
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2022, 8 (01)
  • [40] Temporal Comparisons Involving Paleoclimate Data Assimilation: Challenges and Remedies
    Mile-geay, Julien
    Hakim, Gregory j.
    Viens, Frederi
    Zhu, Feng
    Amrhein, Daniel e.
    JOURNAL OF CLIMATE, 2025, 38 (05) : 1365 - 1385