Principles and challenges of modeling temporal and spatial omics data

被引:31
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [21] Modeling temporal dimensions of semistructured data
    Combi, Carlo
    Oliboni, Barbara
    Quintarelli, Elisa
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2012, 38 (03) : 601 - 644
  • [22] Qualitative Spatial and Temporal Reasoning: Current Status and Future Challenges
    Sioutis, Michael
    Wolter, Diedrich
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4594 - 4601
  • [23] A Novel Data-Driven Modeling Method for the Spatial-Temporal Correlated Complex Sea Clutter
    Zhang, Yanming
    Jiang, Lijun
    Ewe, Hong Tat
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Modeling spatial and temporal variations in soil moisture in China
    Li MingXing
    Ma ZhuGuo
    Niu Guo-Yue
    CHINESE SCIENCE BULLETIN, 2011, 56 (17): : 1809 - 1820
  • [25] CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data
    Lasinio, Giovanna Jona
    Santoro, Mario
    Mastrantonio, Gianluca
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1315 - 1345
  • [26] SM-Omics is an automated platform for high-throughput spatial multi-omics
    Vickovic, S.
    Lotstedt, B.
    Klughammer, J.
    Mages, S.
    Segerstolpe, A.
    Rozenblatt-Rosen, O.
    Regev, A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [27] Learning tissue representation by identification of persistent local patterns in spatial omics data
    Tanevski, Jovan
    Vulliard, Loan
    Ibarra-Arellano, Miguel A.
    Schapiro, Denis
    Hartmann, Felix J.
    Saez-Rodriguez, Julio
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [28] Single-cell spatial (scs) omics: Recent developments in data analysis
    Camacho, Jose
    Armstrong, Michael Sorochan
    Garcia-Martinez, Luz
    Diaz, Caridad
    Gomez-Llorente, Carolina
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2025, 183
  • [29] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [30] Research Challenges in Financial Data Modeling and Analysis
    Alexander, Lewis
    Das, Sanjiv R.
    Ives, Zachary
    Jagadish, H. V.
    Monteleoni, Claire
    BIG DATA, 2017, 5 (03) : 177 - 188