Principles and challenges of modeling temporal and spatial omics data

被引:31
作者
Velten, Britta [1 ,2 ,3 ,4 ]
Stegle, Oliver [1 ,2 ,5 ]
机构
[1] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[2] Wellcome Sanger Inst, Cellular Genet Programme, Cambridge, England
[3] Heidelberg Univ, Ctr Organismal Studies, Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Heidelberg, Germany
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
关键词
GENE REGULATORY NETWORKS; COMMON COORDINATE FRAMEWORK; LONGITUDINAL MULTI-OMICS; CELL RNA-SEQ; SINGLE-CELL; BREAST-CANCER; EXPRESSION; TIME; DYNAMICS; INFERENCE;
D O I
10.1038/s41592-023-01992-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [1] Network modeling of single-cell omics data: challenges, opportunities, and progresses
    Blencowe, Montgomery
    Arneson, Douglas
    Ding, Jessica
    Chen, Yen-Wei
    Saleem, Zara
    Yang, Xia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (04) : 379 - 398
  • [2] SOTIP is a versatile method for microenvironment modeling with spatial omics data
    Yuan, Zhiyuan
    Li, Yisi
    Shi, Minglei
    Yang, Fan
    Gao, Juntao
    Yao, Jianhua
    Zhang, Michael Q.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Modeling the Spatial and Temporal Dependence in fMRI Data
    Derado, Gordana
    Bowman, F. DuBois
    Kilts, Clinton D.
    BIOMETRICS, 2010, 66 (03) : 949 - 957
  • [4] Challenges in the Integration of Omics and Non-Omics Data
    Lopez de Maturana, Evangelina
    Alonso, Lola
    Alarcon, Pablo
    Adoracion Martin-Antoniano, Isabel
    Pineda, Silvia
    Piorno, Lucas
    Luz Calle, M.
    Malats, Nuria
    GENES, 2019, 10 (03)
  • [5] SODB facilitates comprehensive exploration of spatial omics data
    Yuan, Zhiyuan
    Pan, Wentao
    Zhao, Xuan
    Zhao, Fangyuan
    Xu, Zhimeng
    Li, Xiu
    Zhao, Yi
    Zhang, Michael Q.
    Yao, Jianhua
    NATURE METHODS, 2023, 20 (03) : 387 - +
  • [6] Integrative Analysis of Cancer Omics Data for Prognosis Modeling
    Wang, Shuaichao
    Wu, Mengyun
    Ma, Shuangge
    GENES, 2019, 10 (08)
  • [7] Omics data input for metabolic modeling
    Rai, Amit
    Saito, Kazuki
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 127 - 134
  • [8] The dawn of spatial omics
    Bressan, Dario
    Battistoni, Giorgia
    Hannon, Gregory J.
    SCIENCE, 2023, 381 (6657) : 499 - +
  • [9] Molecular epidemiology of pregnancy using omics data: advances, success stories, and challenges
    Rahnavard, Ali
    Chatterjee, Ranojoy
    Wen, Hui
    Gaylord, Clark
    Mugusi, Sabina
    Klatt, Kevin C.
    Smith, Emily R.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [10] Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data
    Su, Jiayu
    Reynier, Jean-Baptiste
    Fu, Xi
    Zhong, Guojie
    Jiang, Jiahao
    Escalante, Rydberg Supo
    Wang, Yiping
    Aparicio, Luis
    Izar, Benjamin
    Knowles, David A.
    Rabadan, Raul
    GENOME BIOLOGY, 2023, 24 (01)