New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities

被引:1
作者
Ciurdariu, Loredana [1 ]
Grecu, Eugenia [2 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara 300006, Romania
[2] Politehn Univ Timisoara, Dept Management, Timisoara 300006, Romania
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 08期
关键词
q-calculus; convexity; midpoint inequalities; Hermite-Hadamard type inequalities; CONVEX;
D O I
10.3390/sym15081514
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main goal of this work is to provide quantum parametrized Hermite-Hadamard like type integral inequalities for functions whose second quantum derivatives in absolute values follow different type of convexities. A new quantum integral identity is derived for twice quantum differentiable functions, which is used as a key element in our demonstrations along with several basic inequalities such as: power mean inequality, and Holder's inequality. The symmetry of the Hermite-Hadamard type inequalities is stressed by the different types of convexities. Several special cases of the parameter are chosen to illustrate the investigated results. Four examples are presented.
引用
收藏
页数:20
相关论文
共 52 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]   Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Murtaza, Ghulam ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[3]   Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables [J].
Ali, Muhammad Aamir ;
Chu, Yu-Ming ;
Budak, Hueseyin ;
Akkurt, Abdullah ;
Yildirim, Hueseyin ;
Zahid, Manzoor Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[4]   New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions [J].
Ali, Muhammad Aamir ;
Abbas, Mujahid ;
Budak, Huseyin ;
Agarwal, Praveen ;
Murtaza, Ghulam ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[5]   Some new Simpson's type inequalities for coordinated convex functions in quantum calculus [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Zhang, Zhiyue ;
Yildirim, Huseyin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) :4515-4540
[6]   SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR s-CONVEX FUNCTIONS [J].
Alomari, Mohammad W. ;
Darus, Maslina ;
Kirmaci, Ugur S. .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) :1643-1652
[7]  
Alp N., 2023, Rocky Mt. J. Math
[8]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[9]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[10]   (q1, q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications [J].
Awan, Muhammad Uzair ;
Javed, Muhammad Zakria ;
Slimane, Ibrahim ;
Kashuri, Artion ;
Cesarano, Clemente ;
Nonlaopon, Kamsing .
FRACTAL AND FRACTIONAL, 2022, 6 (08)