The Present and Future of Artificial Intelligence in Urological Cancer

被引:3
作者
Liu, Xun [1 ]
Shi, Jianxi [1 ]
Li, Zhaopeng [1 ]
Huang, Yue [1 ]
Zhang, Zhihong [1 ]
Zhang, Changwen [1 ]
机构
[1] Tianjin Med Univ, Hosp 2, Tianjin Inst Urol, Tianjin 300211, Peoples R China
关键词
artificial intelligence; urological cancer; pathology; imaging; treatment; RENAL-CELL CARCINOMA; BLADDER-CANCER; INTEROBSERVER VARIABILITY; PROSTATE-CANCER; DIAGNOSIS; MODEL; PREDICTION; OUTCOMES; RISK; OPPORTUNITIES;
D O I
10.3390/jcm12154995
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence has drawn more and more attention for both research and application in the field of medicine. It has considerable potential for urological cancer detection, therapy, and prognosis prediction due to its ability to choose features in data to complete a particular task autonomously. Although the clinical application of AI is still immature and faces drawbacks such as insufficient data and a lack of prospective clinical trials, AI will play an essential role in individualization and the whole management of cancers as research progresses. In this review, we summarize the applications and studies of AI in major urological cancers, including tumor diagnosis, treatment, and prognosis prediction. Moreover, we discuss the current challenges and future applications of AI.
引用
收藏
页数:14
相关论文
共 80 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Deep Learning in Radiation Oncology Treatment Planning for Prostate Cancer: A Systematic Review [J].
Almeida, Goncalo ;
Tavares, Joao Manuel R. S. .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (10)
[3]   Indocyanine Green Drives Computer Vision Based 3D Augmented Reality Robot Assisted Partial Nephrectomy: The Beginning of "Automatic" Overlapping Era [J].
Amparore, Daniele ;
Checcucci, Enrico ;
Piazzolla, Pietro ;
Piramide, Federico ;
De Cillis, Sabrina ;
Piana, Alberto ;
Verri, Paolo ;
Manfredi, Matteo ;
Fiori, Cristian ;
Vezzetti, Enrico ;
Porpiglia, Francesco .
UROLOGY, 2022, 164 :E312-E315
[4]   askMUSIC: Leveraging a Clinical Registry to Develop a New Machine Learning Model to Inform Patients of Prostate Cancer Treatments Chosen by Similar Men [J].
Auffenberg, Gregory B. ;
Ghani, Khurshid R. ;
Ramani, Shreyas ;
Usoro, Etiowo ;
Denton, Brian ;
Rogers, Craig ;
Stockton, Benjamin ;
Miller, David C. ;
Singh, Karandeep .
EUROPEAN UROLOGY, 2019, 75 (06) :901-907
[5]   Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer [J].
Bhambhvani, Hriday P. ;
Zamora, Alvaro ;
Shkolyar, Eugene ;
Prado, Kris ;
Greenberg, Daniel R. ;
Kasman, Alex M. ;
Liao, Joseph ;
Shah, Sumit ;
Srinivas, Sandy ;
Skinner, Eila C. ;
Shah, Jay B. .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2021, 39 (03) :193.e7-193.e12
[6]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[7]   Unintended Consequences of Machine Learning in Medicine [J].
Cabitza, Federico ;
Rasoini, Raffaele ;
Gensini, Gian Franco .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (06) :517-518
[8]   Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Weizer, Alon Z. ;
Alva, Ajjai ;
Cohan, Richard H. ;
Caoili, Elaine M. ;
Paramagul, Chintana ;
Samala, Ravi K. .
SCIENTIFIC REPORTS, 2017, 7
[9]   Robust Prediction of Prognosis and Immunotherapeutic Response for Clear Cell Renal Cell Carcinoma Through Deep Learning Algorithm [J].
Chen, Siteng ;
Zhang, Encheng ;
Jiang, Liren ;
Wang, Tao ;
Guo, Tuanjie ;
Gao, Feng ;
Zhang, Ning ;
Wang, Xiang ;
Zheng, Junhua .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[10]   Clinical use of a machine learning histopathological image signature in diagnosis and survival prediction of clear cell renal cell carcinoma [J].
Chen, Siteng ;
Zhang, Ning ;
Jiang, Liren ;
Gao, Feng ;
Shao, Jialiang ;
Wang, Tao ;
Zhang, Encheng ;
Yu, Hong ;
Wang, Xiang ;
Zheng, Junhua .
INTERNATIONAL JOURNAL OF CANCER, 2021, 148 (03) :780-790