Nehari manifold for a Schrodinger equation with magnetic potential involving sign-changing weight function

被引:2
作者
de Paiva, Francisco Odair [1 ]
de Souza Lima, Sandra Machado [2 ]
Miyagaki, Olimpio Hiroshi [1 ]
机构
[1] Univ Fed Sao Carlos UFSCar, Dept Matemat, Sao Carlos, Brazil
[2] UFF, INFES, Dept Ciencias Exatas Biol & Terra, Santo Antonio de Padua, Brazil
基金
巴西圣保罗研究基金会;
关键词
Sign-changing weight function; magnetic potential; Nehari manifold; fibering map; SEMILINEAR ELLIPTIC EQUATION; 4 POSITIVE SOLUTIONS; CONVEX NONLINEARITIES; NLS EQUATIONS; CONCAVE; FIELDS; EXISTENCE;
D O I
10.1080/00036811.2023.2230257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of elliptic problems -Delta(A)u + u = a lambda(chi)|u|(q-2)u + b(mu)(chi)|u(|p-2)u, x is an element of RN, where 1 < q < 2 < p < 2* = 2N/N-2 N >= 3, a(lambda)(x) is a sign-changing weight function, b(mu)(x) is continuous, lambda > 0 and mu > 0 are real parameters, u is an element of H-A(1) (R-N) and A : R-N -> R-N is a magnetic potential. Exploring the relationship between the Nehari manifold and fibering maps, we will discuss the existence, multiplicity and regularity of solutions.
引用
收藏
页码:1036 / 1063
页数:28
相关论文
共 36 条
[21]  
Esteban M., 1990, PDE CALCULUS VARIATI
[22]   Positive and nodal solutions for a nonlinear Schrodinger equation with indefinite potential [J].
Furtado, Marcelo F. ;
Maia, Liliane A. ;
Medeiros, Everaldo S. .
ADVANCED NONLINEAR STUDIES, 2008, 8 (02) :353-373
[23]  
Gidas B., 1981, ADV MATH SUPPLEMEN A, V7A, P369
[24]  
Gilbarg D., 1998, Grundlehren der mathematischen Wissenschaften, V2nd
[25]   Three positive solutions for semilinear elliptic problems involving concave and convex nonlinearities [J].
Hsu, Tsing-San ;
Lin, Huei-li .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (01) :115-135
[26]   Multiple Positive Solutions for a Class of Concave-Convex Semilinear Elliptic Equations in Unbounded Domains with Sign-Changing Weights [J].
Hsu, Tsing-San .
BOUNDARY VALUE PROBLEMS, 2010,
[27]   Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in RN [J].
Hsu, Tsing-san ;
Lin, Huei-li .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) :758-775
[28]   Multiple positive solutions for a class of concave-convex elliptic problems in RN involving sign-changing weight, II [J].
Huang, Yisheng ;
Wu, Tsung-Fang ;
Wu, Yuanze .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (05)
[29]   Existence and semi-classical limit of the least energy solution to a nonlinear Schrodinger equation with electromagnetic fields [J].
Kurata, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (5-6) :763-778
[30]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243