Nehari manifold for a Schrodinger equation with magnetic potential involving sign-changing weight function

被引:2
作者
de Paiva, Francisco Odair [1 ]
de Souza Lima, Sandra Machado [2 ]
Miyagaki, Olimpio Hiroshi [1 ]
机构
[1] Univ Fed Sao Carlos UFSCar, Dept Matemat, Sao Carlos, Brazil
[2] UFF, INFES, Dept Ciencias Exatas Biol & Terra, Santo Antonio de Padua, Brazil
基金
巴西圣保罗研究基金会;
关键词
Sign-changing weight function; magnetic potential; Nehari manifold; fibering map; SEMILINEAR ELLIPTIC EQUATION; 4 POSITIVE SOLUTIONS; CONVEX NONLINEARITIES; NLS EQUATIONS; CONCAVE; FIELDS; EXISTENCE;
D O I
10.1080/00036811.2023.2230257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of elliptic problems -Delta(A)u + u = a lambda(chi)|u|(q-2)u + b(mu)(chi)|u(|p-2)u, x is an element of RN, where 1 < q < 2 < p < 2* = 2N/N-2 N >= 3, a(lambda)(x) is a sign-changing weight function, b(mu)(x) is continuous, lambda > 0 and mu > 0 are real parameters, u is an element of H-A(1) (R-N) and A : R-N -> R-N is a magnetic potential. Exploring the relationship between the Nehari manifold and fibering maps, we will discuss the existence, multiplicity and regularity of solutions.
引用
收藏
页码:1036 / 1063
页数:28
相关论文
共 36 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]   Multiple Solutions for a Semilinear Elliptic Equation with Critical Growth and Magnetic Field [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) :389-405
[3]   On the number of solutions of NLS equations with magnetics fields in expanding domains [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) :2534-2548
[4]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[5]  
Ambrosetti A., 1992, MEMOIRES SOC MATH FR, V49, P139, DOI DOI 10.24033/MSMF.362
[6]  
[Anonymous], 1981, Adv. Math. Suppl. Stud.
[7]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]  
Brezis H., 2010, Functional Analysis, Sobolev Spaces and Partial Differential Equations