Mask information-based gamma correction in fringe projection profilometry

被引:9
|
作者
Song, Huixin [1 ]
Kong, Lingbao [1 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Shanghai Engn Res Ctr Ultraprecis Opt Mfg, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE; ALGORITHMS; COMPENSATION; NONLINEARITY; SURFACES;
D O I
10.1364/OE.492176
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For fringe projection profilometry (FPP), the gamma effect of the camera and projector will cause non-sinusoidal distortion of the fringe patterns, leading to periodic phase errors and ultimately affecting the reconstruction accuracy. This paper presents a gamma correction method based on mask information. Since the gamma effect will introduce higher-order harmonics into the fringe patterns, on top of projecting two sequences of phase-shifting fringe patterns having different frequencies, a mask image is projected to provide enough information to determine the coefficients of higher-order fringe harmonics using the least-squares method. The true phase is then calculated using Gaussian Newton iteration to compensate for the phase error due to the gamma effect. It does not require projecting a large number of images, and only 2 x 3 phase shift patterns and 1 mask pattern minimum are required. Simulation and experimental results demonstrate that the method can effectively correct the errors caused by the gamma effect. & COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:19478 / 19490
页数:13
相关论文
共 50 条
  • [1] Multi-Color Channel Gamma Correction in Fringe Projection Profilometry
    Sun, Xiang
    Zhang, Yunpeng
    Kong, Lingbao
    Peng, Xing
    Luo, Zhenjun
    Shi, Jie
    Tian, Liping
    PHOTONICS, 2025, 12 (01)
  • [2] A gamma self-correction method via chord distribution coding in fringe projection profilometry
    Deng, Gaoxu
    Wu, Shiqian
    Zou, Lingyun
    Cao, Wei
    Wan, Zhonghua
    ELECTRONICS LETTERS, 2022, 58 (08) : 315 - 317
  • [3] Least-squares gamma estimation in fringe projection profilometry
    Munoz, Antonio
    Flores, Jorge L.
    Parra-Escamilla, Geliztle
    Morales, Luis A.
    Ordones, Sotero
    Servin, Manuel
    APPLIED OPTICS, 2021, 60 (05) : 1137 - 1142
  • [4] Fringe Order Correction for Fringe Projection Profilometry Based on Robust Principal Component Analysis
    Zhang, Yiwei
    Tong, Jun
    Lu, Lei
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    IEEE ACCESS, 2021, 9 : 23110 - 23119
  • [5] Active projection nonlinear ? correction method for fringe projection profilometry
    Wang, L. I. N.
    Zhang, Y. U. E. T. O. N. G.
    Yi, L. I. N. A.
    Hao, X. I. N.
    Wang, M. E. I. Y. I.
    Wang, X. I. A. N. G. J. U. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (11) : 1983 - 1991
  • [6] A New Method for Fringe Order Error Correction in Fringe Projection Profilometry
    Zhang, Yiwei
    Duan, Chengpu
    Xi, Jiangtao
    Tong, Jun
    Yu, Yanguang
    Guo, Qinghua
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS VI, 2019, 11189
  • [7] Flexible Nonlinear Error Correction Method Based on Support Vector Regression in Fringe Projection Profilometry
    Cai, Siao
    Cui, Ji
    Li, Wei
    Feng, Guoying
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] Accurate fringe projection profilometry using instable projection light source
    Zhao, Yang
    Yu, Haotian
    Bai, Lianfa
    Zheng, Dongliang
    Han, Jing
    OPTICS COMMUNICATIONS, 2022, 507
  • [9] Untrained deep learning-based fringe projection profilometry
    Yu, Haotian
    Han, Bowen
    Bai, Lianfa
    Zheng, Dongliang
    Han, Jing
    APL PHOTONICS, 2022, 7 (01)
  • [10] Gaussian mixture model based invalid point removal for fringe projection profilometry
    Song, Huixin
    Kong, Lingbao
    Wang, Qiyuan
    OPTICS AND LASER TECHNOLOGY, 2025, 182