Label-free histological analysis of retrieved thrombi in acute ischemic stroke using optical diffraction tomography and deep learning

被引:4
|
作者
Chung, Yoonjae [1 ,2 ]
Kim, Geon [2 ,3 ]
Moon, Ah-Rim [4 ]
Ryu, DongHun [2 ,9 ]
Hugonnet, Herve [2 ,3 ]
Lee, Mahn Jae [5 ]
Shin, DongSeong [6 ]
Lee, Seung-Jae [7 ]
Lee, Eek-Sung [7 ]
Park, YongKeun [2 ,8 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Elect Engn, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst Hlth Sci & Technol, Daejeon, South Korea
[4] Soonchunhyang Univ, Dept Pathol, Bucheon Hosp, Bucheon, South Korea
[5] Korea Adv Inst Sci & Technol, Grad Sch Med Sci & Engn, Daejeon, South Korea
[6] Soonchunhyang Univ, Dept Neurosurg, Bucheon Hosp, Bucheon, South Korea
[7] Soonchunhyang Univ, Dept Neurol, Bucheon Hosp, Bucheon 14584, South Korea
[8] Tomocube Inc, Daejeon, South Korea
[9] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
基金
新加坡国家研究基金会;
关键词
acute ischemic stroke; deep learning; label-free; optical diffraction tomography; thrombus composition; PHASE; MICROSCOPY; QUANTIFICATION; INFLAMMATION;
D O I
10.1002/jbio.202300067
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
For patients with acute ischemic stroke, histological quantification of thrombus composition provides evidence for determining appropriate treatment. However, the traditional manual segmentation of stained thrombi is laborious and inconsistent. In this study, we propose a label-free method that combines optical diffraction tomography (ODT) and deep learning (DL) to automate the histological quantification process. The DL model classifies ODT image patches with 95% accuracy, and the collective prediction generates a whole-slide map of red blood cells and fibrin. The resulting whole-slide composition displays an average error of 1.1% and does not experience staining variability, facilitating faster analysis with reduced labor. The present approach will enable rapid and quantitative evaluation of blood clot composition, expediting the preclinical research and diagnosis of cardiovascular diseases.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
    Liu, Rongrong
    Cheng, Shiyi
    Tian, Lei
    Yi, Ji
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [32] Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
    Rongrong Liu
    Shiyi Cheng
    Lei Tian
    Ji Yi
    Light: Science & Applications, 8
  • [33] Influence of Chemical and Genetic Manipulations on Cellular Organelles Quantified by Label-Free Optical Diffraction Tomography
    Cho, Min Ju
    Kim, Chae-Eun
    Shin, Yeon Hui
    Kim, Jun Ki
    Pack, Chan-Gi
    ANALYTICAL CHEMISTRY, 2023, 95 (36) : 13478 - 13487
  • [34] Fast label-free optical diffraction tomography compatible with conventional wide-field microscopes
    Rodrigo, Jose A.
    Soto, Juan M.
    Alieva, Tatiana
    OPTICAL METHODS FOR INSPECTION, CHARACTERIZATION, AND IMAGING OF BIOMATERIALS IV, 2019, 11060
  • [35] Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning
    Wu, Yichen
    Calis, Ayfer
    Luo, Yi
    Chen, Cheng
    Lutton, Maxwell
    Rivenson, Yair
    Lin, Xing
    Koydemir, Hatice Ceylan
    Zhang, Yibo
    Wang, Hongda
    Gorocs, Zoltan
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (11): : 4617 - 4627
  • [36] Real-Time Monitoring of Multitarget Antimicrobial Mechanisms of Peptoids Using Label-Free Imaging with Optical Diffraction Tomography
    Kim, Minsang
    Cheon, Yeongmi
    Shin, Dongmin
    Choi, Jieun
    Nielsen, Josefine Eilso
    Jeong, Myeong Seon
    Nam, Ho Yeon
    Kim, Sung-Hak
    Lund, Reidar
    Jenssen, Havard
    Barron, Annelise E.
    Lee, Seongsoo
    Seo, Jiwon
    ADVANCED SCIENCE, 2023, 10 (24)
  • [37] Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography
    Oh, Jeonghun
    Ryu, Jea Sung
    Lee, Moosung
    Jung, Jaehwang
    Han, SeungYun
    Chung, Hyun Jung
    Park, Yongkeun
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (03) : 1257 - 1267
  • [38] Three-dimensional observations of metastatic cancer cells in body fluids using label-free optical diffraction tomography
    Jo, U.
    Jeong, J.
    Kim, T.
    Kim, T.
    Kim, M.
    Jang, S. J.
    Song, J. S.
    Pack, C.
    VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S321 - S321
  • [39] Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography
    Lee, Chungha
    Kim, Seunggyu
    Hugonnet, Herve
    Lee, Moosung
    Park, Weisun
    Jeon, Jessie S.
    Park, YongKeun
    LAB ON A CHIP, 2021, 21 (03) : 494 - 501
  • [40] Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning
    Isil, Cagatay
    de Haan, Kevin
    Gorocs, Zoltan
    Koydemir, Hatice Ceylan
    Peterman, Spencer
    Baum, David
    Song, Fang
    Skandakumar, Thamira
    Gumustekin, Esin
    Ozcan, Aydogan
    ACS PHOTONICS, 2021, 8 (04) : 1232 - 1242