Label-free histological analysis of retrieved thrombi in acute ischemic stroke using optical diffraction tomography and deep learning

被引:4
|
作者
Chung, Yoonjae [1 ,2 ]
Kim, Geon [2 ,3 ]
Moon, Ah-Rim [4 ]
Ryu, DongHun [2 ,9 ]
Hugonnet, Herve [2 ,3 ]
Lee, Mahn Jae [5 ]
Shin, DongSeong [6 ]
Lee, Seung-Jae [7 ]
Lee, Eek-Sung [7 ]
Park, YongKeun [2 ,8 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Elect Engn, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst Hlth Sci & Technol, Daejeon, South Korea
[4] Soonchunhyang Univ, Dept Pathol, Bucheon Hosp, Bucheon, South Korea
[5] Korea Adv Inst Sci & Technol, Grad Sch Med Sci & Engn, Daejeon, South Korea
[6] Soonchunhyang Univ, Dept Neurosurg, Bucheon Hosp, Bucheon, South Korea
[7] Soonchunhyang Univ, Dept Neurol, Bucheon Hosp, Bucheon 14584, South Korea
[8] Tomocube Inc, Daejeon, South Korea
[9] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
基金
新加坡国家研究基金会;
关键词
acute ischemic stroke; deep learning; label-free; optical diffraction tomography; thrombus composition; PHASE; MICROSCOPY; QUANTIFICATION; INFLAMMATION;
D O I
10.1002/jbio.202300067
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
For patients with acute ischemic stroke, histological quantification of thrombus composition provides evidence for determining appropriate treatment. However, the traditional manual segmentation of stained thrombi is laborious and inconsistent. In this study, we propose a label-free method that combines optical diffraction tomography (ODT) and deep learning (DL) to automate the histological quantification process. The DL model classifies ODT image patches with 95% accuracy, and the collective prediction generates a whole-slide map of red blood cells and fibrin. The resulting whole-slide composition displays an average error of 1.1% and does not experience staining variability, facilitating faster analysis with reduced labor. The present approach will enable rapid and quantitative evaluation of blood clot composition, expediting the preclinical research and diagnosis of cardiovascular diseases.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Yalçin Özuysal, Özden
    Pesen Okvur, Devrim
    Önal, Sevgi
    TÖreyİn, Behçet Uğur
    Ünay, Devrim
    Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29 : 2855 - 2868
  • [22] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Ozuysal, Ozden Yalcin
    Okvur, Devrim Pesen
    Onal, Sevgi
    Toreyin, Behcet Ugur
    Unay, Devrim
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2855 - 2868
  • [23] Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning
    Ryu, DongHun
    Kim, Jinho
    Lim, Daejin
    Min, Hyun-Seok
    Yoo, In Young
    Cho, Duck
    Park, YongKeun
    BME FRONTIERS, 2021, 2021
  • [24] Label-free identification of protein aggregates using deep learning
    Ibrahim K.A.
    Grußmayer K.S.
    Riguet N.
    Feletti L.
    Lashuel H.A.
    Radenovic A.
    Nature Communications, 14 (1)
  • [25] Physicochemical Properties of Nucleoli in Live Cells Analyzed by Label-Free Optical Diffraction Tomography
    Kim, Tae-Keun
    Lee, Byong-Wook
    Fujii, Fumihiko
    Kim, Jun Ki
    Pack, Chan-Gi
    CELLS, 2019, 8 (07)
  • [26] Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography
    Lee, Ariel J.
    Yoon, DongJo
    Han, SeungYun
    Hugonnet, Herve
    Park, WeiSun
    Park, Je-Kyun
    Nam, YoonKey
    Park, YongKeun
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (11): : 6928 - 6939
  • [27] Label-free imaging and evaluation of characteristic properties of asthma-derived eosinophils using optical diffraction tomography
    Kim, Sang-Yeob
    Lee, Ji-Hyang
    Shin, Yeonhee
    Kim, Tae-Keun
    Lee, Ji Won
    Pyo, Min Ju
    Lee, A. Ryang
    Pack, Chan-Gi
    Cho, You Sook
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 587 : 42 - 48
  • [28] Mitotic Chromosomes in Live Cells Characterized Using High-Speed and Label-Free Optical Diffraction Tomography
    Kim, Tae-Keun
    Lee, Byong-Wook
    Fujii, Fumihiko
    Lee, Kee-Hang
    Lee, Sanghwa
    Park, YongKeun
    Kim, Jun Ki
    Lee, Sang-Wook
    Pack, Chan-Gi
    CELLS, 2019, 8 (11)
  • [29] Deep Learning Enables Virtual Histological Staining of Label-free Tissue Sections Using Auto-fluorescence
    Rivenson, Yair
    Wang, Hongda
    de Haan, Kevin
    Wei, Zhensong
    Ozcan, Aydogan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [30] Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning
    Devalla, Sripad Krishna
    Tan Hung Pham
    Panda, Satish Kumar
    Zhang, Liang
    Subramanian, Giridhar
    Swaminathan, Anirudh
    Yun, Chin Zhi
    Rajan, Mohan
    Mohan, Sujatha
    Krishnadas, Ramaswami
    Senthil, Vijayalakshmi
    De Leon, John Mark S.
    Tun, Tin A.
    Cheng, Ching-Yu
    Schmetterer, Leopold
    Perera, Shamira
    Aung, Tin
    Thiery, Alexandre H.
    Girard, Michael J. A.
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (11): : 6356 - 6378