Approximate Oblique Dual g-Frames for Closed Subspaces of Hilbert Spaces

被引:4
作者
Chi, Xiujiao [1 ]
Li, Pengtong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
g-frames; approximate oblique duals; oblique duals; perturbation;
D O I
10.1007/s00009-023-02421-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first introduce the notion of approximate oblique dual g-frames for closed subspaces in Hilbert spaces and give a characterization. Then we give its interpretation in the setting of signal processing where the signals are considered as elements in a Hilbert space under certain requirements. We extend some important properties of approximate dual g-frames to oblique setting. Finally, we construct approximate oblique duals of g-frames for a closed subspace and give the formula. Moreover, we prove that if two g-frames for a closed subspace are close to each other, each oblique dual of any of them is an approximate oblique dual of the other.
引用
收藏
页数:19
相关论文
共 17 条
[1]  
Casazza P. G., 2004, CONT MATH, V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[2]  
Christensen Ole, 2010, Sampling Theory in Signal and Image Processing, V9, P77
[3]   Oblique dual frames and shift-invariant spaces [J].
Christensen, O ;
Eldar, YC .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :48-68
[4]  
Christensen O., 2016, INTRO FRAMES RIESZ B
[5]  
Christensen O, 2008, APPL NUMER HARMON AN, P1, DOI 10.1007/978-0-8176-4678-3_1
[6]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[7]  
Díaz JP, 2023, Arxiv, DOI arXiv:2012.11452
[8]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[9]   Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [J].
Eldar, YC .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (01) :77-96
[10]   Quasi-orthogonal decompositions of structured frames [J].
Fornasier, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :180-199