Intelligent modeling with physics-informed machine learning for petroleum engineering problems

被引:10
作者
Xie, Chiyu [1 ,2 ]
Du, Shuyi [1 ,2 ]
Wang, Jiulong [2 ,3 ]
Lao, Junming [1 ,2 ]
Song, Hongqing [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Beijing 100083, Peoples R China
[2] Natl & Local Joint Engn Lab Big Data Anal & Comp, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 065007, Peoples R China
来源
ADVANCES IN GEO-ENERGY RESEARCH | 2023年 / 8卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Physics-informed machine learning; petroleum engineering; data-driven; embedding mechanism; MOLECULAR-DYNAMICS SIMULATIONS; NEURAL-NETWORKS; PREDICTION; PERMEABILITY;
D O I
10.46690/ager.2023.05.01
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The advancement in big data and artificial intelligence has enabled a novel exploration mode for the study of petroleum engineering. Unlike theory-based solution methods, the data-driven intelligent approaches demonstrate superior flexibility, computational efficiency and accuracy for dealing with complex multi-scale, and multi-physics problems. However, these intelligent models often disregard physical laws in pursuit of error minimization, which leads to certain uncertainties. Therefore, physics-informed machine learning approaches have been developed based on data, guided by physics, and supported by machine learning models. This study summarizes four embedding mechanisms for introducing physical information into machine learning models, including input data-based embedding, model architecture-based embedding, loss function-based embedding, and model optimization-based embedding mechanism. These "data + physics" dual-driven intelligent models not only exhibit higher prediction accuracy while adhering to physic laws, but also accelerate the convergence to improve computational efficiency. This paradigm will facilitate the guide developments in solving petroleum engineering problems toward a more comprehensive and efficient direction.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [1] A review of physics-informed machine learning for building energy modeling
    Ma, Zhihao
    Jiang, Gang
    Hu, Yuqing
    Chen, Jianli
    APPLIED ENERGY, 2025, 381
  • [2] Physics-informed machine learning for reduced-order modeling of nonlinear problems
    Chen, Wenqian
    Wang, Qian
    Hesthaven, Jan S.
    Zhang, Chuhua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [3] The Application of Physics-Informed Machine Learning in Multiphysics Modeling in Chemical Engineering
    Wu, Zhiyong
    Wang, Huan
    He, Chang
    Zhang, Bingjian
    Xu, Tao
    Chen, Qinglin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (44) : 18178 - 18204
  • [4] A critical review of physics-informed machine learning applications in subsurface energy systems
    Latrach, Abdeldjalil
    Malki, Mohamed L.
    Morales, Misael
    Mehana, Mohamed
    Rabiei, Minou
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 239
  • [5] Physics-Informed Machine Learning Part I: Different Strategies to Incorporate Physics into Engineering Problems
    Tronci, Eleonora Maria
    Downey, Austin R. J.
    Mehrjoo, Azin
    Chowdhury, Puja
    Coble, Daniel
    DATA SCIENCE IN ENGINEERING, VOL. 10, IMAC 2024, 2025, : 1 - 6
  • [6] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [7] Unit Operation and Process Modeling with Physics-Informed Machine Learning
    Li, Haochen
    Spelman, David
    Sansalone, John
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2024, 150 (04)
  • [8] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750
  • [9] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [10] Physics-Informed Machine Learning for Surrogate Modeling of Heat Transfer Phenomena
    Suzuki, Tomoyuki
    Hirohata, Kenji
    Ito, Yasutaka
    Hato, Takehiro
    Kano, Akira
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (11):