A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling

被引:4
|
作者
Wang, Cuiyu [1 ]
Li, Xinyu [1 ]
Gao, Yiping [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2023年 / 137卷 / 02期
基金
中国国家自然科学基金;
关键词
Multi-objective flexible job shop scheduling; Pareto archive set; collaborative evolutionary; crowd similarity; GENETIC ALGORITHM; DISPATCHING RULES; HYBRID; OPTIMIZATION;
D O I
10.32604/cmes.2023.028098
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS) is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve this goal, a novel collaborative evolutionary algorithm with two-population based on Pareto optimality is proposed for FJS, which improves the solutions of FJS by interacting in each generation. In addition, several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS, which has discovered some new Pareto solutions in the well-known benchmark problems, and some solutions can dominate the solutions of some other methods.
引用
收藏
页码:1849 / 1870
页数:22
相关论文
共 50 条
  • [1] A Collaborative Evolutionary Algorithm for Multi-objective Flexible Job Shop Scheduling Problem
    Li, X. Y.
    Gao, L.
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 997 - 1002
  • [2] Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem
    Rahmati, Seyed Habib A.
    Zandieh, M.
    Yazdani, M.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 64 (5-8): : 915 - 932
  • [3] Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm
    Wang, Chun
    Ji, Zhicheng
    Wang, Yan
    MODERN PHYSICS LETTERS B, 2017, 31 (19-21):
  • [4] MULTI-OBJECTIVE SCHEDULING SIMULATION OF FLEXIBLE JOB-SHOP BASED ON MULTI-POPULATION GENETIC ALGORITHM
    Zhang, W.
    Wen, J. B.
    Zhu, Y. C.
    Hu, Y.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2017, 16 (02) : 313 - 321
  • [5] A Memetic Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problem
    Yuan, Yuan
    Xu, Hua
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 559 - 566
  • [6] Evolutionary algorithms for multi-objective flexible job shop cell scheduling
    Deliktas, Derya
    Ozcan, Ender
    Ustun, Ozden
    Torkul, Orhan
    APPLIED SOFT COMPUTING, 2021, 113
  • [7] Multi-objective fuzzy flexible job shop scheduling using memetic algorithm
    Wang, Chun
    Tian, Na
    Ji, Zhicheng
    Wang, Yan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (14) : 2828 - 2846
  • [8] A Knee-Point Driven Multi-objective Evolutionary Algorithm for Flexible Job Shop Scheduling
    Li, Wenhua
    Zhang, Tao
    Wang, Rui
    Wang, Bo
    Song, Yuanming
    Li, Xunjia
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1716 - 1722
  • [9] Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm
    Soto, Carlos
    Dorronsoro, Bernabe
    Fraire, Hector
    Cruz-Reyes, Laura
    Gomez-Santillan, Claudia
    Rangel, Nelson
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 53 (53)
  • [10] An Adaptive Multi-Objective Evolutionary Algorithm with Two-Stage Local Search for Flexible Job-Shop Scheduling
    Li, Yingli
    Wang, Jiahai
    Liu, Zhengwei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 54 - 66