Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating Nrf2/HO-1 Signaling Pathway

被引:79
|
作者
Feng, Qi [1 ,2 ,3 ]
Yang, Yang [4 ]
Qiao, Yingjin [5 ]
Zheng, Yifeng [7 ]
Yu, Xiaoyue [1 ,2 ,3 ]
Liu, Fengxun [1 ,2 ,3 ]
Wang, Hui [1 ,2 ,3 ]
Zheng, Bin [1 ,2 ,3 ]
Pan, Shaokang [1 ,2 ,3 ]
Ren, Kaidi [6 ]
Liu, Dongwei [1 ,2 ,3 ]
Liu, Zhangsuo [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Res Inst Nephrol, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[2] Zhengzhou Univ, Dept Integrated Tradit & Western Nephrol, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[3] Zhengzhou Univ, Henan Prov Res Ctr Kidney Dis, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[4] Zhengzhou Univ, Clin Syst Biol Labs, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[5] Zhengzhou Univ, Blood Purificat Ctr, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[6] Zhengzhou Univ, Dept Pharm, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
[7] Shinshu Univ, Inst Biomed Sci, 8304 Minamiminowa, Kamiina, Nagano 3994598, Japan
来源
AMERICAN JOURNAL OF CHINESE MEDICINE | 2023年 / 51卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Diabetic Nephropathy; Quercetin (QCT); Ferroptosis; Renal Tubular Epithelial Cells; Nrf2/HO-1 Signaling Pathway; NRF2;
D O I
10.1142/S0192415X23500465
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. Ferroptosis-triggered renal tubular injury is reported to participate in the development of DN, and blocking ferroptosis might be an effective strategy to prevent the development of DN. Quercetin (QCT), a natural flavonoid that is present in a variety of fruits and vegetables, has been reported to ameliorate DN. However, its underlying nephroprotective mechanism is unclear. Herein, we explored the antiferroptosic effect of QCT and verified its nephroprotective effect using DN mice and high glucose (HG)-incubated renal tubular epithelial cell models. We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.
引用
收藏
页码:997 / 1018
页数:22
相关论文
共 50 条
  • [31] 6-Gingerol Alleviates Ferroptosis and Inflammation of Diabetic Cardiomyopathy via the Nrf2/HO-1 Pathway
    Wu, Shenglin
    Zhu, Jinxiu
    Wu, Guihai
    Hu, Zuoqi
    Ying, Pengxiang
    Bao, Zhijun
    Ding, Zipeng
    Tan, Xuerui
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022
  • [32] 6-Gingerol Alleviates Ferroptosis and Inflammation of Diabetic Cardiomyopathy via the Nrf2/HO-1 Pathway
    Wu, Shenglin
    Zhu, Jinxiu
    Wu, Guihai
    Hu, Zuoqi
    Ying, Pengxiang
    Bao, Zhijun
    Ding, Zipeng
    Tan, Xuerui
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022
  • [33] Calycosin Alleviates Lupus Nephritis by Activating the Nrf2/HO-1 Signaling Pathway
    Yang Yu
    Peng Sun
    Revista Brasileira de Farmacognosia, 2023, 33 : 1052 - 1059
  • [34] Calycosin Alleviates Lupus Nephritis by Activating the Nrf2/HO-1 Signaling Pathway
    Yu, Yang
    Sun, Peng
    REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY, 2023, 33 (05): : 1052 - 1059
  • [35] Astragaloside IV attenuates ferroptosis after subarachnoid hemorrhage via Nrf2/HO-1 signaling pathway
    Liu, Zhuanghua
    Zhou, Zhaopeng
    Ai, Pu
    Zhang, Chunlei
    Chen, Junhui
    Wang, Yuhai
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [36] Effects of terbuthylazine on myocardial oxidative stress and ferroptosis via Nrf2/HO-1 signaling pathway in broilers
    Wu, Haitong
    Li, Haoye
    Huo, Haihua
    Li, Xinrun
    Zhu, Heyun
    Zhao, Lijiao
    Liao, Jianzhao
    Tang, Zhaoxin
    Guo, Jianying
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2023, 197
  • [37] Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway
    Lv, Chenlei
    Cheng, Tianyang
    Zhang, Bingbing
    Sun, Ke
    Lu, Keda
    RENAL FAILURE, 2023, 45 (01)
  • [38] Eriodictyol attenuates spinal cord injury by activating Nrf2/HO-1 pathway and inhibiting NF-κB pathway
    Mao, Xiaojie
    Jiang, Zhiyang
    Shi, Chaohong
    Lu, Junjun
    Rao, Gaofeng
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2020, 19 (08) : 1611 - 1617
  • [39] Licochalcone A Ameliorates Aspergillus fumigatus Keratitis by Reducing Fungal Load and Activating the Nrf2/HO-1 Signaling Pathway
    Tian, Yiran
    Luan, Junjie
    Wang, Qian
    Li, Cui
    Peng, Xudong
    Jiang, Nan
    Zhao, Guiqiu
    Lin, Jing
    ACS INFECTIOUS DISEASES, 2024, 10 (10): : 3516 - 3527
  • [40] Human Urinary Kallidinogenase improves vascular endothelial injury by activating the Nrf2/HO-1 signaling pathway
    Zhang, Xiong
    Yang, Jiaying
    Lu, Yini
    Liu, Yi
    Wang, Tianyin
    Yu, Feng
    CHEMICO-BIOLOGICAL INTERACTIONS, 2024, 403