Components of the Space of Weighted Composition Operators Between Different Fock Spaces in Several Variables

被引:1
作者
Khoi, Le Hai [1 ]
Thom, Le Thi Hong [2 ,3 ]
Tien, Pham Trong [2 ]
机构
[1] Vietnam France Univ, Univ Sci & Technol Hanoi USTH, Vietnam Acad Sci & Technol, Hanoi, Vietnam
[2] Vietnam Natl Univ, Univ Sci, Dept Math Mech & Informat, Hanoi, Vietnam
[3] FPT Univ, Dept Math, Hoa Lac High Tech Pk, Hanoi, Vietnam
关键词
Topological structure; Fock space; composition operator; weighted composition operator; TOPOLOGICAL-STRUCTURE;
D O I
10.1007/s00009-023-02388-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we completely solve the topological structure problem for the space of nonzero weighted composition operators acting between Fock spaces F-p(C-n) and F-q(C-n) with p, q ? (0, 8]. All (path) components of this space are explicitly described.
引用
收藏
页数:20
相关论文
共 19 条
[1]   Volterra type operators on growth Fock spaces [J].
Abakumov, Evgeny ;
Doubtsov, Evgueni .
ARCHIV DER MATHEMATIK, 2017, 108 (04) :383-393
[2]  
Carswell B.J., 2003, ACTA SCI MATH, V69, P871
[3]   Linear sums of two composition operators on the Fock space [J].
Choe, Boo Rim ;
Izuchi, Kou Hei ;
Koo, Hyungwoon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :112-119
[4]  
Cowen C.C, 1995, COMPOSITION OPERATOR
[5]   Topological Components of the Space of Composition Operators on Fock Spaces [J].
Dai, Jineng .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) :201-212
[6]   On the connected component of compact composition operators on the Hardy space [J].
Gallardo-Gutierrez, Eva A. ;
Gonzalez, Maria J. ;
Nieminen, Pekka J. ;
Saksman, Eero .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :986-1001
[7]  
Horn R.A., 2012, Matrix Analysis, DOI 10.1017/CBO9780511810817
[8]   Topological structure of the space of weighted composition operators on H∞ [J].
Hosokawa, T ;
Izuchi, K ;
Ohno, S .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) :509-526
[9]   Topological Structure of the Space of Weighted Composition Operators Between Different Hardy Spaces [J].
Izuchi, Kei Ji ;
Ohno, Shuichi .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) :153-164
[10]  
Izuchi KJ, 2013, T AM MATH SOC, V365, P3593