Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer

被引:2
作者
De Santi, Lisa Anita [1 ,2 ]
Meloni, Antonella [2 ,3 ]
Santarelli, Maria Filomena [4 ]
Pistoia, Laura [3 ]
Spasiano, Anna [5 ]
Casini, Tommaso [6 ]
Putti, Maria Caterina [7 ]
Cuccia, Liana [8 ]
Cademartiri, Filippo [3 ]
Positano, Vincenzo [2 ,3 ]
机构
[1] Univ Pisa, Dept Informat Engn, I-56122 Pisa, Italy
[2] Fdn G Monasterio CNR Reg Toscana, UOC Bioingn, I-56124 Pisa, Italy
[3] Fdn G Monasterio CNR Reg Toscana, Dept Radiol, I-56124 Pisa, Italy
[4] CNR Inst Clin Physiol, I-56124 Pisa, Italy
[5] Azienda Osped Rilievo Nazl A Cardarelli, Unita Operat Semplice Dipartimentale Malattie Rare, I-80131 Naples, Italy
[6] Osped Meyer, Ctr Talassemie Emoglobinopatie, I-50139 Florence, Italy
[7] Azienda Osped Univ, Dipartimento Salute Donna & Bambino, Clin Emato Oncol Pediat, I-35128 Padua, Italy
[8] ARNAS Civ Benfratelli Di Cristina, Unita Operat Complessa Ematol Con Talassemia, I-90127 Palermo, Italy
关键词
cardiac magnetic resonance; left ventricle; deep learning; object detection; visual transformer; SEGMENTATION; HEART;
D O I
10.3390/s23063321
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Left Ventricle (LV) detection from Cardiac Magnetic Resonance (CMR) imaging is a fundamental step, preliminary to myocardium segmentation and characterization. This paper focuses on the application of a Visual Transformer (ViT), a novel neural network architecture, to automatically detect LV from CMR relaxometry sequences. We implemented an object detector based on the ViT model to identify LV from CMR multi-echo T2* sequences. We evaluated performances differentiated by slice location according to the American Heart Association model using 5-fold cross-validation and on an independent dataset of CMR T2*, T2, and T1 acquisitions. To the best of our knowledge, this is the first attempt to localize LV from relaxometry sequences and the first application of ViT for LV detection. We collected an Intersection over Union (IoU) index of 0.68 and a Correct Identification Rate (CIR) of blood pool centroid of 0.99, comparable with other state-of-the-art methods. IoU and CIR values were significantly lower in apical slices. No significant differences in performances were assessed on independent T2* dataset (IoU = 0.68, p = 0.405; CIR = 0.94, p = 0.066). Performances were significantly worse on the T2 and T1 independent datasets (T2: IoU = 0.62, CIR = 0.95; T1: IoU = 0.67, CIR = 0.98), but still encouraging considering the different types of acquisition. This study confirms the feasibility of the application of ViT architectures in LV detection and defines a benchmark for relaxometry imaging.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Abdeltawab H, 2020, COMPUT MED IMAG GRAP, V81, DOI [10.1016/j.compmedimg.2020.101717, 10.1016/j.compmedimag.2020.101717]
[2]   Toward an automatic detection of cardiac structures in short and long axis views [J].
Amel, Laidi ;
Ammar, Mohammed ;
Daho, Mostafa El Habib ;
Mahmoudi, Said .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
[3]   Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation [J].
Attar, Rahman ;
Pereanez, Marco ;
Gooya, Ali ;
Alba, Xenia ;
Zhang, Le ;
de Vila, Milton Hoz ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Petersen, Steffen E. ;
Frangi, Alejandro F. .
MEDICAL IMAGE ANALYSIS, 2019, 56 :26-42
[4]  
Awad AI, 2016, STUD COMPUT INTELL, V630, P1, DOI 10.1007/978-3-319-28854-3
[5]   Technical Note: Fully automatic segmental relaxometry (FASTR) for cardiac magnetic resonance T1 mapping [J].
Bhatt, Nitish ;
Ramanan, Venkat ;
Gunraj, Hayden ;
Guo, Fumin ;
Biswas, LaBonny ;
Qi, Xiuling ;
Roifman, Idan ;
Wright, Graham A. ;
Ghugre, Nilesh R. .
MEDICAL PHYSICS, 2021, 48 (04) :1815-1822
[6]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]   A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance [J].
Fadil, Hakim ;
Totman, John J. ;
Hausenloy, Derek J. ;
Ho, Hee-Hwa ;
Joseph, Prabath ;
Low, Adrian Fatt-Hoe ;
Richards, A. Mark ;
Chan, Mark Y. ;
Marchesseau, Stephanie .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2021, 23 (01)
[9]  
Feng X., 2019, Deep learning in object detection and recognition
[10]  
github.com, OBJECT DETECTION VIS