Deep generative image priors for semantic face manipulation

被引:10
作者
Hou, Xianxu [1 ,2 ,3 ,4 ]
Shen, Linlin [1 ,2 ,3 ]
Ming, Zhong [2 ]
Qiu, Guoping [5 ,6 ]
机构
[1] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Sch AI & Adv Comp, Suzhou, Peoples R China
[5] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[6] Univ Nottingham, Sch Comp Sci, Nottingham, England
基金
中国国家自然科学基金;
关键词
GANs; Face attribute prediction; Semantic face manipulation; AGE; GENDER;
D O I
10.1016/j.patcog.2023.109477
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous works on generative adversarial networks (GANs) mainly focus on how to synthesize highfidelity images. In this paper, we present a framework to leverage the knowledge learned by GANs for semantic face manipulation. In particular, we propose to control the semantics of synthesized faces by adapting the latent codes with an attribute prediction model. Moreover, in order to achieve a more accurate estimation of different facial attributes, we propose to pretrain the attribute prediction model by inverting the synthesized face images back to the GAN latent space. As a result, our method explicitly considers the semantics encoded in the latent space of a pretrained GAN and is able to faithfully edit various attributes like eyeglasses, smiling, bald, age, mustache and gender for high-resolution face images. Extensive experiments show that our method has superior performance compared to state of the art for both face attribute prediction and semantic face manipulation. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 66 条
  • [11] Donahue Jeff, Adversarial feature learning
  • [12] Age and Gender Estimation of Unfiltered Faces
    Eidinger, Eran
    Enbar, Roee
    Hassner, Tal
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2014, 9 (12) : 2170 - 2179
  • [13] Frid-Adar M, 2018, I S BIOMED IMAGING, P289, DOI 10.1109/ISBI.2018.8363576
  • [14] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [15] Image Processing Using Multi-Code GAN Prior
    Gu, Jinjin
    Shen, Yujun
    Zhou, Bolei
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3009 - 3018
  • [16] Günther M, 2017, 2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), P90, DOI 10.1109/BTAS.2017.8272686
  • [17] A framework for joint estimation of age, gender and ethnicity on a large database
    Guo, Guodong
    Mu, Guowang
    [J]. IMAGE AND VISION COMPUTING, 2014, 32 (10) : 761 - 770
  • [18] Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach
    Han, Hu
    Jain, Anil K.
    Wang, Fang
    Shan, Shiguang
    Chen, Xilin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (11) : 2597 - 2609
  • [19] Hand EM, 2017, AAAI CONF ARTIF INTE, P4068
  • [20] AttGAN: Facial Attribute Editing by Only Changing What You Want
    He, Zhenliang
    Zuo, Wangmeng
    Kan, Meina
    Shan, Shiguang
    Chen, Xilin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5464 - 5478