Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy

被引:39
作者
Chen, Yue [1 ,2 ,3 ]
Wu, Wenkai [4 ]
Gonzalez-Munoz, Sergio [1 ]
Forcieri, Leonardo [1 ]
Wells, Charlie [1 ]
Jarvis, Samuel P. [1 ]
Wu, Fangling [1 ]
Young, Robert [1 ]
Dey, Avishek [3 ,5 ]
Isaacs, Mark [6 ]
Nagarathinam, Mangayarkarasi [7 ]
Palgrave, Robert G. [5 ]
Tapia-Ruiz, Nuria [3 ,8 ]
Kolosov, Oleg V. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
[3] Harwell Sci & Innovat Campus, Faraday Inst, Quad One, Didcot OX11 0RA, England
[4] Swansea Univ, Coll Engn, Bay Campus,Fabian Way, Swansea SA18EN, Wales
[5] Res Complex Harwell RCaH, EPSRC Natl Facil XPS HarwellXPS, Harwell, Didcot OX11 0FA, Oxon, England
[6] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[7] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[8] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 0BZ, England
基金
英国工程与自然科学研究理事会;
关键词
LI-ION BATTERIES; MIXED CARBONATE/LIPF6 ELECTROLYTE; MOLECULAR-DYNAMICS SIMULATION; IN-SITU AFM; ETHYLENE CARBONATE; GRAPHITE ANODE; DOUBLE-LAYER; PROPYLENE CARBONATE; FIELD PARAMETERS; EDGE PLANE;
D O I
10.1038/s41467-023-37033-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Characterization of the solid electrolyte interphase formed on Li-ion battery electrodes presents significant experimental challenges. Here the authors use atomic force microscopy-based force-spectroscopy techniques to depict the initial interphase formation in two different electrolyte classes. The solid electrolyte interphase in rechargeable Li-ion batteries, its dynamics and, significantly, its nanoscale structure and composition, hold clues to high-performing and safe energy storage. Unfortunately, knowledge of solid electrolyte interphase formation is limited due to the lack of in situ nano-characterization tools for probing solid-liquid interfaces. Here, we link electrochemical atomic force microscopy, three-dimensional nano-rheology microscopy and surface force-distance spectroscopy, to study, in situ and operando, the dynamic formation of the solid electrolyte interphase starting from a few 0.1 nm thick electrical double layer to the full three-dimensional nanostructured solid electrolyte interphase on the typical graphite basal and edge planes in a Li-ion battery negative electrode. By probing the arrangement of solvent molecules and ions within the electric double layer and quantifying the three-dimensional mechanical property distribution of organic and inorganic components in the as-formed solid electrolyte interphase layer, we reveal the nanoarchitecture factors and atomistic picture of initial solid electrolyte interphase formation on graphite-based negative electrodes in strongly and weakly solvating electrolytes.
引用
收藏
页数:13
相关论文
共 99 条
[1]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[2]   Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field [J].
Beckstein, Oliver ;
Fourrier, Anais ;
Iorga, Bogdan I. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2014, 28 (03) :265-276
[3]   Tip Charge Dependence of Three-Dimensional AFM Mapping of Concentrated Ionic Solutions [J].
Benaglia, Simone ;
Uhlig, Manuel R. ;
Hernandez-Munoz, Jose ;
Chacon, Enrique ;
Tarazona, Pedro ;
Garcia, Ricardo .
PHYSICAL REVIEW LETTERS, 2021, 127 (19)
[4]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[5]   Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite [J].
Black, Jennifer M. ;
Walters, Deron ;
Labuda, Aleksander ;
Feng, Guang ;
Hillesheim, Patrick C. ;
Dai, Sheng ;
Cummings, Peter T. ;
Kalinin, Sergei V. ;
Proksch, Roger ;
Balke, Nina .
NANO LETTERS, 2013, 13 (12) :5954-5960
[6]   Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study [J].
Boyer, Mathew J. ;
Vilciauskas, Linas ;
Hwang, Gyeong S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (40) :27868-27876
[7]   Revealing Water Films Structure from Force Reconstruction in Dynamic AFM [J].
Calo, Annalisa ;
Domingo, Neus ;
Santos, Sergio ;
Verdaguer, Albert .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (15) :8258-8265
[8]   Ion-solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes [J].
Chen, Xiang ;
Yao, Nan ;
Zeng, Bo-Shen ;
Zhang, Qiang .
FUNDAMENTAL RESEARCH, 2021, 1 (04) :393-398
[9]   Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes [J].
Chen, Xiang ;
Zhang, Qiang .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) :1992-2002
[10]   Controlling Interfacial Reduction Kinetics and Suppressing Electrochemical Oscillations in Li4Ti5O12 Thin-Film Anodes [J].
Chen, Yue ;
Pan, Handian ;
Lin, Chun ;
Li, Jiaxin ;
Cai, Rongsheng ;
Haigh, Sarah J. ;
Zhao, Guiying ;
Zhang, Jianmin ;
Lin, Yingbin ;
Kolosov, Oleg, V ;
Huang, Zhigao .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (43)