Machine learning models to accelerate the design of polymeric long-acting injectables

被引:102
作者
Bannigan, Pauric [1 ]
Bao, Zeqing [1 ]
Hickman, Riley J. [2 ,3 ,4 ]
Aldeghi, Matteo [2 ,3 ,4 ]
Hase, Florian [2 ,3 ,4 ]
Aspuru-Guzik, Alan [2 ,3 ,4 ,5 ,6 ,7 ]
Allen, Christine [1 ]
机构
[1] Univ Toronto, Leslie Dan Fac Pharm, Toronto, ON M5S 3M2, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3H6, Canada
[3] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[4] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[5] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
[6] Canadian Inst Adv Res, Toronto, ON M5S 1M1, Canada
[7] Vector Inst, CIFAR Artificial Intelligence Res Chair, Toronto, ON M5S 1M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
IN-VITRO RELEASE; DRUG-DELIVERY SYSTEM; PACLITAXEL TAXOL(R); PLGA MICROPARTICLES; MICROSPHERES; FORMULATION; PHARMACOKINETICS; OSTEOARTHRITIS; DEXAMETHASONE; SUSPENSION;
D O I
10.1038/s41467-022-35343-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-acting injectables are considered one of the most promising therapeutic strategies for the treatment of chronic diseases as they can afford improved therapeutic efficacy, safety, and patient compliance. The use of polymer materials in such a drug formulation strategy can offer unparalleled diversity owing to the ability to synthesize materials with a wide range of properties. However, the interplay between multiple parameters, including the physicochemical properties of the drug and polymer, make it very difficult to intuitively predict the performance of these systems. This necessitates the development and characterization of a wide array of formulation candidates through extensive and time-consuming in vitro experimentation. Machine learning is enabling leap-step advances in a number of fields including drug discovery and materials science. The current study takes a critical step towards data-driven drug formulation development with an emphasis on long-acting injectables. Here we show that machine learning algorithms can be used to predict experimental drug release from these advanced drug delivery systems. We also demonstrate that these trained models can be used to guide the design of new long acting injectables. The implementation of the described data-driven approach has the potential to reduce the time and cost associated with drug formulation development. Polymer-based long-acting injectable drugs are a promising therapeutic strategy for chronic diseases. Here the authors use machine learning to inform the data-driven development of advanced drug formulations.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Pharmacokinetics of intramuscular microparticle depot of valdecoxib in an experimental model [J].
Agnihotri, Sagar M. ;
Vavia, Pradeep R. .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2009, 35 (09) :1043-1047
[2]   Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology [J].
Andres-Guerrero, Vanessa ;
Zong, Mengmeng ;
Ramsay, Eva ;
Rojas, Blanca ;
Sarkhel, Sanjay ;
Gallego, Beatriz ;
de Hoz, Rosa ;
Ramirez, Ana I. ;
Salazar, Juan Jose ;
Trivino, Alberto ;
Ramirez, Jose M. ;
del Amo, Eva M. ;
Camerong, Neil ;
de-las-Heras, Beatriz ;
Urtti, Arto ;
Mihov, George ;
Dias, Aylvin ;
Herrero-Vanrell, Rocio .
JOURNAL OF CONTROLLED RELEASE, 2015, 211 :105-117
[3]  
[Anonymous], 2022, LYNP OL TABL
[4]   Synthesis, characterizations, in vitro and in vivo evaluation of Etoricoxib-loaded Poly (Caprolactone) microparticles - a potential Intra-articular drug delivery system for the treatment of Osteoarthritis [J].
Arunkumar, P. ;
Indulekha, S. ;
Vijayalakshmi, S. ;
Srivastava, R. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2016, 27 (04) :303-316
[5]  
Bannigan Pauric, 2022, Zenodo, DOI 10.5281/ZENODO.7309141
[6]   Machine learning directed drug formulation development [J].
Bannigan, Pauric ;
Aldeghi, Matteo ;
Bao, Zeqing ;
Hase, Florian ;
Aspuru-Guzik, Alan ;
Allen, Christine .
ADVANCED DRUG DELIVERY REVIEWS, 2021, 175
[7]   Poly(δ-valerolactone-co-allyl-δ-valerolactone) cross-linked microparticles: Formulation, characterization and biocompatibility [J].
Bao, Zeqing ;
Jung, Sungmin ;
Bufton, Jack ;
Evans, James C. ;
Aguiar, Dean J. ;
Allen, Christine .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (07) :2771-2777
[8]   Effect of mean diameter and polydispersity of PLG microspheres on drug release: Experiment and theory [J].
Berchane, N. S. ;
Carson, K. H. ;
Rice-Ficht, A. C. ;
Andrews, M. J. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 337 (1-2) :118-126
[9]   Degradable polymeric vehicles for postoperative pain management [J].
Brigham, Natasha C. ;
Ji, Ru-Rong ;
Becker, Matthew L. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Cross-linked valerolactone copolymer implants with tailorable biodegradation, loading and in vitro release of paclitaxel [J].
Bufton, Jack ;
Jung, Sungmin ;
Evans, James C. ;
Bao, Zeqing ;
Aguiar, Dean ;
Allen, Christine .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 162