Methodology to design and optimise dispersed continuous carbon fibre composites parts by fused filament fabrication

被引:10
作者
Gomez, D. Garoz [1 ,2 ,5 ]
Pascual-Gonzalez, C. [1 ,3 ]
Caraballo, J. Garcia-Moreno [1 ,4 ]
Fernandez-Blazquez, J. P. [1 ]
机构
[1] IMDEA Mat Inst, C-Er Kandel 2, Getafe 28906, Madrid, Spain
[2] Univ Politecn Madrid, Inst Fus Nucl Guillermo Velarde, C-Jose Gutierrez Abascal 2, Madrid 28006, Spain
[3] Rey Juan Carlos Univ, Mat Sci & Engn Area, C-Tulipan s-n, Mostoles 28933, Madrid, Spain
[4] Univ Nebrija, Escuela Politecn Super & Arquitectura, C Sta Cruz Marcenado 27, Madrid 28015, Spain
[5] Univ Politecn Madrid, Inst Fus Nucl Guillermo Velarde, C-Jose Gutierrez Abascal 2, Madrid 28006, Spain
关键词
Dispersed continuous carbon fibre composites; Fused filament fabrication; Virtual testing based on finite elements; Mechanical performance; DAMAGE RESISTANCE; IMPACT RESISTANCE; STACKING-SEQUENCE; TOLERANCE;
D O I
10.1016/j.compositesa.2022.107315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dispersed continuous carbon fibre laminates improve specific capabilities of composites under predefined load conditions. The 3D printing technology based on Fused Filament Fabrication (FFF) allows for the exact setup of the continuous reinforcement orientation. This article proposes a novel methodology to design, manufacture and optimise structural parts with mechanical behaviour adapted to applications. The new methodology encompasses: (i) customised mechanical properties, (ii) manufacturing via 3D printing and post-processing, (iii) characterisation of advanced material models for finite element simulations, and (iv) virtual testing of the structural part considering the 3D printer limitations. An aluminium motorcycle triple tree has been replaced with an optimised 3D printed composite part for braking and cornering. The mechanical properties of the 3D printer laminates have been enhanced via pressurised post-processing at 150 degrees C for 15 min. The good agreement between coupon experiments and simulations validates the advanced material models used in the virtual tests.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
Abaqus, 2020, US DOC AB 2020
[2]  
[Anonymous], 2017, STANDARD TEST METHOD, DOI DOI 10.1520/D3039_D3039M-17
[3]  
Barbero E.J., 2010, Introduction to Composite Materials Design, V2nd
[4]  
Bazant Z.P., 1983, Materiaux Constr., V16, P155, DOI [10.1007/BF02486267, DOI 10.1007/BF02486267]
[5]   Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J].
Benzeggagh, ML ;
Kenane, M .
COMPOSITES SCIENCE AND TECHNOLOGY, 1996, 56 (04) :439-449
[6]   An investigation into 3D printing of fibre reinforced thermoplastic composites [J].
Blok, L. G. ;
Longana, M. L. ;
Yu, H. ;
Woods, B. K. S. .
ADDITIVE MANUFACTURING, 2018, 22 :176-186
[7]   A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage [J].
Bull, D. J. ;
Helfen, L. ;
Sinclair, I. ;
Spearing, S. M. ;
Baumbach, T. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 75 :55-61
[8]  
Camanho P., 2015, Numerical modelling of failure in advanced composite materials
[9]   Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling [J].
Caminero, M. A. ;
Chacon, J. M. ;
Garcia-Moreno, I. ;
Rodriguez, G. P. .
COMPOSITES PART B-ENGINEERING, 2018, 148 :93-103
[10]   Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling [J].
Caminero, M. A. ;
Chacon, J. M. ;
Garcia-Moreno, I ;
Reverte, J. M. .
POLYMER TESTING, 2018, 68 :415-423