Correlating Near-Infrared Spectra to Bulk Properties in Polyolefins

被引:6
作者
Sutliff, Bradley P. [1 ]
Goyal, Shailja [1 ]
Martin, Tyler B. [1 ]
Beaucage, Peter A. [2 ]
Audus, Debra J. [1 ]
Orski, Sara V. [1 ]
机构
[1] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[2] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
关键词
LOW-DENSITY POLYETHYLENE; BRANCHED POLYETHYLENES; PHASE-BEHAVIOR; CRYSTALLINITY; BLENDS; SPECTROSCOPY; WASTE; PERFORMANCE; PREDICTION; DEPENDENCE;
D O I
10.1021/acs.macromol.3c02290
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The industry standard for sorting plastic wastes is near-infrared (NIR) spectroscopy, which offers rapid and nondestructive identification of various plastics. However, NIR does not provide insights into the chain composition, conformation, and topology of polyolefins. Molar mass, branching distribution, thermal properties, and comonomer content are important variables that affect final recyclate properties and compatibility with virgin resins. Heterogeneous mixtures arise through sorting errors, multicomponent materials, or limits on differentiation of polyolefin subclasses leading to poor thermal and mechanical properties. Classic polymer measurement methods can quantify physical properties, which would enable better sorting; however, they are generally too slow for application in commercial recycling facilities. Herein, we leverage the limited chemistry of polyolefins and correlate the structural information from slower measurement methods to NIR spectra through machine learning models. We discuss the success of NIR-property correlations to delineate between polyolefins based on topology.
引用
收藏
页码:2329 / 2338
页数:10
相关论文
共 70 条
[1]   Crystallinity Behavior of MDPE-Clay Nanocomposites Fabricated using Ball Milling Method [J].
Abareshi, M. ;
Zebarjad, S. M. ;
Goharshadi, E. K. .
JOURNAL OF COMPOSITE MATERIALS, 2009, 43 (23) :2821-2830
[2]   Phase behavior of blends of linear and branched polyethylenes on micron length scales via ultra-small-angle neutron scattering [J].
Agamalian, M ;
Alamo, RG ;
Kim, MH ;
Londono, JD ;
Mandelkern, L ;
Wignall, GD .
MACROMOLECULES, 1999, 32 (09) :3093-3096
[3]   POLYETHYLENE - PREPARATION, STRUCTURE, AND PROPERTIES [J].
AGGARWAL, SL ;
SWEETING, OJ .
CHEMICAL REVIEWS, 1957, 57 (04) :665-742
[4]  
[Anonymous], 2019, International Organization for Standardization ISO-ISO 1183-1:2019-Plastics-Methods for Determining the Density of Non-Cellular Plastics-Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method
[5]  
[Anonymous], 2022, D7611M21 ASTM
[6]  
ASTM International, 2020, D79220 ASTM INT
[7]  
ASTM International, 2023, D88323 ASTM
[8]  
Blaine R. L., 2003, THERMAL APPL NOTE PO
[9]  
Bowyer J., 2015, UNDERSTANDING STEEL, P1
[10]   Prediction of polyethylene density from FTIR and Raman spectroscopy using multivariate data analysis [J].
Bredacs, M. ;
Barretta, C. ;
Castillon, L. F. ;
Frank, A. ;
Oreski, G. ;
Pinter, G. ;
Gergely, S. .
POLYMER TESTING, 2021, 104