The smoothing effect in sharp Gevrey space for the spatially homogeneous non-cutoff Boltzmann equations with a hard potential

被引:0
作者
Liu, Lvqiao [1 ]
Zeng, Juan [2 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Boltzmann equation; Gevrey regularity; non-cutoff; hard potential; LITTLEWOOD-PALEY THEORY; LINEARIZED BOLTZMANN; ENTROPY DISSIPATION; REGULARITY ISSUES; ANGULAR CUTOFF; EXISTENCE;
D O I
10.1007/s10473-024-0205-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L2 weighted estimates.
引用
收藏
页码:455 / 473
页数:19
相关论文
共 38 条
  • [1] Entropy dissipation and long-range interactions
    Alexandre, R
    Desvillettes, L
    Villani, C
    Wennberg, B
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) : 327 - 355
  • [2] Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I. Non-cutoff case and Maxwellian molecules
    Alexandre, R
    El Safadi, M
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (06) : 907 - 920
  • [3] The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) : 915 - 1010
  • [4] The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 599 - 661
  • [5] Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff
    Alexandre, Radjesvarane
    Herau, Frederic
    Li, Wei-Xi
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 1 - 71
  • [6] LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (04) : 1011 - 1041
  • [7] Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) : 39 - 123
  • [8] LITTLEWOOD-PALEY THEORY AND REGULARITY ISSUES IN BOLTZMANN HOMOGENEOUS EQUATIONS II. NON CUTOFF CASE AND NON MAXWELLIAN MOLECULES
    Alexandre, Radjesvarane
    Elsafadi, Mouhamad
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (01) : 1 - 11
  • [9] Gevrey Smoothing for Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff for Maxwellian Molecules
    Barbaroux, Jean-Marie
    Hundertmark, Dirk
    Ried, Tobias
    Vugalter, Semjon
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) : 601 - 661
  • [10] Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials
    Cao, Hongmei
    Li, Wei-Xi
    Xu, Chao-Jiang
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 176 : 138 - 182