Towards the automated detection of interictal epileptiform discharges with magnetoencephalography

被引:5
作者
Fernandez-Martin, Raquel [1 ,6 ]
Feys, Odile [1 ,2 ]
Juvene, Elodie [3 ]
Aeby, Alec [3 ]
Urbain, Charline [1 ,4 ]
De Tiege, Xavier [1 ,5 ]
Wens, Vincent [1 ,5 ]
机构
[1] Univ Libre Bruxelles ULB, ULB Neurosci Inst UNI, Lab Neuroanat & Neuroimagerie Translat LN2T, Brussels, Belgium
[2] Univ libre Bruxelles ULB, Hop Univ Bruxelles HUB, Hop Erasme, Dept Neurol, Brussels, Belgium
[3] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Dept Radiat Oncol, B-1070 Brussels, Belgium
[4] Univ Libre Bruxelles ULB, Ctr Res Cognit & Neurosci CRCN, Neuropsychol & Funct Neuroimaging Res Unit UR2NF, UNI ULB Neurosci Inst, Brussels, Belgium
[5] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Hop Erasme, Dept Translat Neuroimaging, Brussels, Belgium
[6] HUB Hop Erasme, Dept Translat Neuroimaging, 808 Route Lennik, B-1070 Brussels, Belgium
关键词
Interictal epileptiform; Epilepsy; Automated detection; Magnetoencephalography; Hidden Markov Modeling; Independent Components Analysis; EPILEPTOGENIC ZONE; MEG; EPILEPSY; LOCALIZATION; EEG; NETWORKS; ILAE;
D O I
10.1016/j.jneumeth.2023.110052
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria. New Method: Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy. Results: In focal epilepsy patients, both pipelines successfully detected visually identified IEDs, but also revealed unidentified low-amplitude IEDs. Success was more mitigated in patients with multifocal epilepsy, as our automated pipeline missed IED activity associated with some foci-an issue that could be alleviated by post-hoc manual selection of epileptiform ICs or HMM states. Comparison with existing methods: We compared our results with visual IED detection by an experienced clinical magnetoencephalographer, getting heightened sensitivity and requiring minimal input from clinical practitioners. Conclusions: IED detection based on ICA or HMM represents an efficient way to identify IED localization and timing. The development of these automatic IED detection algorithms provide a step forward in clinical MEG practice by decreasing the duration of MEG analysis and enhancing its sensitivity.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Assessment of the Utility of Ictal Magnetoencephalography in the Localization of the Epileptic Seizure Onset Zone [J].
Alkawadri, Rafeed ;
Burgess, Richard C. ;
Kakisaka, Yosuke ;
Mosher, John C. ;
Alexopoulos, Andreas V. .
JAMA NEUROLOGY, 2018, 75 (10) :1264-1272
[2]   Toward stability of dynamic FC estimates in neuroimaging and electrophysiology: Solutions and limits [J].
Alonso, Sonsoles ;
Vidaurre, Diego .
NETWORK NEUROSCIENCE, 2023, 7 (04) :1389-1403
[3]   It is time to harmonize clinical MEG practice internationally [J].
Bagic, Anto I. ;
Rampp, Stefan .
CLINICAL NEUROPHYSIOLOGY, 2020, 131 (08) :1769-1771
[4]   American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: Recording and Analysis of Spontaneous Cerebral Activity [J].
Bagic, Anto I. ;
Knowlton, Robert C. ;
Rose, Douglas F. ;
Ebersole, John S. .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2011, 28 (04) :348-354
[5]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[6]  
Brichacek A.L., 2020, medRxiv, DOI [DOI 10.1101/2020, 10.27.357558]
[7]   Investigating the electrophysiological basis of resting state networks using magnetoencephalography [J].
Brookes, Matthew J. ;
Woolrich, Mark ;
Luckhoo, Henry ;
Price, Darren ;
Hale, Joanne R. ;
Stephenson, Mary C. ;
Barnes, Gareth R. ;
Smith, Stephen M. ;
Morris, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (40) :16783-16788
[8]   MEG for Greater Sensitivity and More Precise Localization in Epilepsy [J].
Burgess, Richard C. .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2020, 30 (02) :145-+
[9]   Data-driven approach for the delineation of the irritative zone in epilepsy in MEG [J].
Chirkov, Valerii ;
Kryuchkova, Anna ;
Koptelova, Alexandra ;
Stroganova, Tatiana ;
Kuznetsova, Alexandra S. ;
Kleeva, Daria S. ;
Ossadtchi, Alexei S. ;
Fedele, Tommaso S. .
PLOS ONE, 2022, 17 (10)
[10]   MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy [J].
Chowdhury, Rasheda Arman ;
Zerouali, Younes ;
Hedrich, Tanguy ;
Heers, Marcel ;
Kobayashi, Eliane ;
Lina, Jean-Marc ;
Grova, Christophe .
BRAIN TOPOGRAPHY, 2015, 28 (06) :785-812