Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning

被引:25
作者
Zhu, Weiqiang [1 ,2 ]
Biondi, Ettore [1 ]
Li, Jiaxuan [1 ]
Yin, Jiuxun [1 ]
Ross, Zachary E. [1 ]
Zhan, Zhongwen [1 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA
[2] Univ Calif Berkeley, Berkeley Seismol Lab, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
EARTHQUAKE DETECTION; NEURAL-NETWORK; HAYWARD FAULT; ALGORITHM;
D O I
10.1038/s41467-023-43355-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels. We introduce a semi-supervised learning approach to address the phase-picking task of DAS data. We use the pre-trained PhaseNet model to generate noisy labels of P/S arrivals in DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels and build training datasets. We develop PhaseNet-DAS, a deep learning model designed to process 2D spatio-temporal DAS data to achieve accurate phase picking and efficient earthquake detection. Our study demonstrates a method to develop deep learning models for DAS data, unlocking the potential of integrating DAS in enhancing earthquake monitoring. In this study, the authors develop a semi-supervised approach to train a deep learning model, PhaseNet-DAS, for identifying seismic phases in Distributed Acoustic Sensing (DAS) data, which enables detecting and locating earthquakes using fiber-optic networks.
引用
收藏
页数:11
相关论文
共 89 条
  • [1] ALLEN RV, 1978, B SEISMOL SOC AM, V68, P1521
  • [2] Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
    Arazo, Eric
    Ortego, Diego
    Albert, Paul
    O'Connor, Noel E.
    McGuinness, Kevin
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] Fault Zone Imaging With Distributed Acoustic Sensing: Body-To-Surface Wave Scattering
    Atterholt, James
    Zhan, Zhongwen
    Yang, Yan
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (11)
  • [4] Slow Earthquakes and Nonvolcanic Tremor
    Beroza, Gregory C.
    Ide, Satoshi
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 39, 2011, 39 : 271 - 296
  • [5] Geolocalization of Large-Scale DAS Channels Using a GPS-Tracked Moving Vehicle
    Biondi, Ettore
    Wang, Xin
    Williams, Ethan F.
    Zhan, Zhongwen
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2023, 94 (01) : 318 - 330
  • [6] Using a Deep Neural Network and Transfer Learning to Bridge Scales for Seismic Phase Picking
    Chai, Chengping
    Maceira, Monica
    Venkatakrishnan, Singanallur V.
    Schoenball, Martin
    Zhu, Weiqiang
    Beroza, Gregory C.
    Thurber, Clifford
    Santos-Villalobos, Hector J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (16)
  • [7] Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
  • [8] MarsQuakeNet: A More Complete Marsquake Catalog Obtained by Deep Learning Techniques
    Dahmen, Nikolaj L.
    Clinton, John F.
    Meier, Men-Andrin
    Staehler, Simon C.
    Ceylan, Savas
    Kim, Doyeon
    Stott, Alexander E.
    Giardini, Domenico
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (11)
  • [9] Dai JF, 2017, Arxiv, DOI [arXiv:1703.06211, 10.48550/ARXIV.1703.06211, DOI 10.48550/ARXIV.1703.06211]
  • [10] The detection of low magnitude seismic events using array-based waveform correlation
    Gibbons, Steven J.
    Ringdal, Frode
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 165 (01) : 149 - 166