Poly(acrylic acid)-Modified SnO2 Electron Transport Layer for Perovskite Solar Cells

被引:3
|
作者
Wang, Yanqing [1 ,2 ,3 ]
Wu, Yu [1 ]
Li, Mengzhu [1 ]
Wang, Zhaozhao [1 ]
Zhang, Weizhi [1 ]
Shi, Chengwu [1 ]
Cui, Peng [1 ]
机构
[1] Hefei Univ Technol, Sch Chem & Chem Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[3] Huangshan Novel Co Ltd, Huangshan 245999, Peoples R China
来源
CHEMISTRYSELECT | 2023年 / 8卷 / 48期
基金
中国国家自然科学基金;
关键词
Buried interface; Modification; Perovskite solar cells; Poly(acrylic acid); Tin oxide; HIGHLY EFFICIENT; POLY(VINYLPYRROLIDONE)-DOPED SNO2;
D O I
10.1002/slct.202303395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2 is one of the most used inorganic electron transport materials for organic-inorganic halide perovskite solar cells. However, the surface defects of SnO2 will block the electron transport at the SnO2/perovskite buried interface and limit the device performance. Here, poly(acrylic acid) (PAA) is employed to modify the SnO2 electron transport layer. Carboxyl groups can react with KOH in the commercial SnO2 aqueous colloidal dispersion to produce potassium polyacrylate, the -COO- can combine not only with oxygen and Sn4+ on SnO2, but also can chelate with uncoordinated Pb2+ defects on perovskite. Moreover, carboxyl groups can form a chemical linker between SnO2 and perovskite via the esterification reaction, leading to the reduction of surface hydroxyl group defects of SnO2. The optimal solar cells with PAA modification achieve an enhanced power conversion efficiency of 18.88 % and improved stability.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells
    Jiang, Qi
    Zhang, Xingwang
    You, Jingbi
    SMALL, 2018, 14 (31)
  • [2] Progress of SnO2 as Electron Transport Layer for Perovskite Solar Cells
    Liu Z.
    Chen J.
    Peng Z.
    Chen J.
    Chen, Jianlin (cjlinhunu@csust.edu.cn), 1600, Cailiao Daobaoshe/ Materials Review (34): : 21072 - 21080and21098
  • [3] Enhancing the performance of the perovskite solar cells by modifying the SnO2 electron transport layer
    Dahal, Biplav
    Guo, Rui
    Pathak, Rajesh
    Rezaee, Melorina Dolafi
    Elam, Jeffrey W.
    Mane, Anil U.
    Li, Wenzhi
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 181
  • [4] SnO2 electron transport layer modified with gentian violet for perovskite solar cells with enhanced performance
    Cheng, Nian
    Cao, Yang
    Li, Weiwei
    Yu, Zhen
    Liu, Zhen
    Lei, Bao
    Zi, Wei
    Xiao, Zhenyu
    Tu, Youchao
    Rodriguez-Gallegos, Carlos D.
    ORGANIC ELECTRONICS, 2022, 108
  • [5] Poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance
    Wang, Di
    Chen, Shan-Ci
    Zheng, Qingdong
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (39) : 12204 - 12210
  • [6] Effect of Bilayer SnO2 Electron Transport Layer on the Interfacial Charge Transport in Perovskite Solar Cells
    Luo Yuan
    Zhang Gui-Lin
    Ma Shu-Peng
    Zhu Cong-Tan
    Chen Tian
    Zhang Lin
    Zhu Liu
    Guo Xue-Yi
    Yang Ying
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (05) : 850 - 860
  • [7] Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%
    Wang, Haibing
    Liu, Hongri
    Ye, Feihong
    Chen, Zhiliang
    Ma, Junjie
    Liang, Jiwei
    Zheng, Xiaolu
    Tao, Chen
    Fang, Guojia
    JOURNAL OF POWER SOURCES, 2021, 481
  • [8] Progress and Challenges of SnO2 Electron Transport Layer for Perovskite Solar Cells: A Critical Review
    Uddin, Ashraf
    Yi, Haimang
    SOLAR RRL, 2022, 6 (06)
  • [9] CuCl2-modified SnO2 electron transport layer for high efficiency perovskite solar cells
    Han, Liang
    Hu, Haihua
    Yuan, Min
    Lin, Ping
    Wang, Peng
    Xu, Lingbo
    Yu, Xuegong
    Cui, Can
    NANOTECHNOLOGY, 2023, 34 (30)
  • [10] Regulation of SnO2 Electron Transport Layers for Perovskite Solar Cells
    Cui Yupeng
    Gong Jue
    Liu Mingzhen
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)