Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current

被引:17
|
作者
Wang, Ya [1 ]
Hu, Huicheng [2 ]
Yuan, Mohan [1 ]
Xia, Hang [1 ]
Zhang, Xingchen [1 ]
Liu, Jing [1 ]
Yang, Ji [2 ]
Xu, Shaoqiu [3 ]
Shi, Zhaorong [1 ]
He, Jungang [4 ]
Zhang, Jianbing [3 ]
Gao, Liang [1 ,2 ,5 ,6 ]
Tang, Jiang [1 ,2 ,5 ,6 ]
Lan, Xinzheng [1 ,2 ,5 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Integrated Circuit, Wuhan 430074, Hubei, Peoples R China
[4] Wuhan Inst Technol, Sch Mat Sci & Engn, Hubei Engn Technol Res Ctr Optoelect & New Energy, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Hubei, Peoples R China
[5] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
[6] Wenzhou Adv Mfg Technol Res Inst Huazhong Univ Sci, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PbS CQDs; photodetectors; oxidation; dark current; TFT imager; PHOTOVOLTAICS; PERFORMANCE;
D O I
10.1021/acsami.3c12918
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lead sulfide (PbS) colloidal quantum dots (CQDs) for photodetectors (PDs) have garnered great attention due to their potential use as low-cost, high-performance, and large-area infrared focal plane arrays. The prevailing device architecture employed for PbS CQD PDs is the p-i-n structure, where PbS CQD films treated with thiol molecules, such as 1,2-ethanedithiol (EDT), are widely used as p-type layers due to their favorable band alignment. However, PbS-EDT films face a critical challenge associated with low film quality, resulting in many defects that curtail the device performance. Herein, a controlled oxidization process is developed for better surface passivation of the PbS-EDT transport layer. The dark current density (J(d)) of PbS CQD PDs based on optimized PbS-EDT layer shows a dramatic decrease by nearly 2 orders of magnitude. The increase of carrier lifetime and suppression of carrier recombination via controlled oxidation in PbS-EDT CQDs were confirmed by transient absorption spectra and electrochemical impedance spectra. The device based on the optimized PbS-EDT hole transport layer (HTL) exhibits a specific detectivity (D*) that is 3.4 times higher compared to the control device. Finally, the CQD PD employing oxidization PbS-EDT CQDs is integrated with a thin film transistor (TFT) readout circuit, which successfully accomplishes material discrimination imaging, material occlusion imaging, and smoke penetration imaging. The controlled oxidization strategy verifies the significance of surface management of CQD solids and is expected to help advance infrared optoelectronic applications based on CQDs.
引用
收藏
页码:58573 / 58582
页数:10
相关论文
共 50 条
  • [1] Ultrafast Colloidal Quantum Dot Infrared Photodiode
    Xu, Qiwei
    Meng, Lingju
    Sinha, Kaustubh
    Chowdhury, Farsad, I
    Hu, Jun
    Wang, Xihua
    ACS PHOTONICS, 2020, 7 (05): : 1297 - 1303
  • [2] Single PbS colloidal quantum dot transistors
    Shibata, Kenji
    Yoshida, Masaki
    Hirakawa, Kazuhiko
    Otsuka, Tomohiro
    Bisri, Satria Zulkarnaen
    Iwasa, Yoshihiro
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer
    Zhao, Tianshuo
    Goodwin, Earl D.
    Guo, Jiacen
    Wang, Han
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2016, 10 (10) : 9267 - 9273
  • [4] Photocarrier Radiometry Characteristics of PbS Colloidal Quantum Dot Films
    Luo Donghui
    Wang Qian
    Zhao Zitao
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (09)
  • [5] Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity
    Wei, Yuanzhi
    Ren, Zhenwei
    Zhang, Andong
    Mao, Peng
    Li, Hui
    Zhong, Xinhua
    Li, Weiwei
    Yang, Shiyong
    Wang, Jizheng
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (11)
  • [6] Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers
    Liu, Peilin
    Lu, Shuaicheng
    Liu, Jing
    Xia, Bing
    Yang, Gaoyuan
    Ke, Mo
    Zhao, Xuezhi
    Yang, Junrui
    Liu, Yuxuan
    Ge, Ciyu
    Liang, Guijie
    Chen, Wei
    Lan, Xinzheng
    Zhang, Jianbing
    Gao, Liang
    Tang, Jiang
    INFOMAT, 2024, 6 (01)
  • [7] Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells
    Li, Mingyu
    Chen, Shiwu
    Zhao, Xinzhao
    Xiong, Kao
    Wang, Bo
    Shah, Usman Ali
    Gao, Liang
    Lan, Xinzheng
    Zhang, Jianbing
    Hsu, Hsien-Yi
    Tang, Jiang
    Song, Haisheng
    SMALL, 2022, 18 (01)
  • [8] Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor
    Nikitskiy, Ivan
    Goossens, Stijn
    Kufer, Dominik
    Lasanta, Tania
    Navickaite, Gabriele
    Koppens, Frank H. L.
    Konstantatos, Gerasimos
    NATURE COMMUNICATIONS, 2016, 7
  • [9] Investigation of the quantum dot infrared photodetectors dark current
    Jahromi, H. Dehdashti
    Sheikhi, M. H.
    Yousefi, M. H.
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (06) : 1020 - 1025
  • [10] Colloidal PbS Quantum Dot Solar Cells with High Fill Factor
    Zhao, Ni
    Osedach, Tim P.
    Chang, Liang-Yi
    Geyer, Scott M.
    Wanger, Darcy
    Binda, Maddalena T.
    Arango, Alexi C.
    Bawendi, Moungi G.
    Bulovic, Vladimir
    ACS NANO, 2010, 4 (07) : 3743 - 3752