CNN-based automatic modulation recognition for index modulation systems

被引:4
|
作者
Leblebici, Merih [1 ]
Calhan, Ali [2 ]
Cicioglu, Murtaza [3 ]
机构
[1] Duzce Univ, Dept Elect & Elect Engn, TR-81620 Duzce, Turkiye
[2] Duzce Univ, Dept Comp Engn, TR-81620 Duzce, Turkiye
[3] Bursa Uludag Univ, Dept Comp Engn, TR-16059 Bursa, Turkiye
关键词
Automatic modulation recognition; Convolutional neural network; Index modulation; Machine learning; SPATIAL MODULATION; CLASSIFICATION; PERFORMANCE; OFDM;
D O I
10.1016/j.eswa.2023.122665
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic modulation recognition (AMR) has garnered significant attention in both civilian and military domains, with applications ranging from spectrum sensing and cognitive radio (CR) to the deterrence of adversary communication. Index modulation (IM) represents an innovative digital modulation technique that exploits the indices of parameters of communication systems to transmit extra information bits. This paper aims to examine the performance of a convolutional neural network (CNN)-based AMR across various IM systems, including spatial modulation (SM), quadrature spatial modulation (QSM), and generalized spatial modulation (GSM) with eight digital modulation schemes. In this study, we leverage confusion matrices, receiver operating characteristic (ROC) curves, and F1 scores to illustrate the recognition model's outputs.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] CNN-Based Modulation Classification for OFDM Signal
    Song, Geonho
    Jang, Mingyu
    Yoon, Dongweon
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1326 - 1328
  • [12] Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning
    Wang, Danshi
    Zhang, Min
    Li, Ze
    Li, Jin
    Fu, Meixia
    Cui, Yue
    Chen, Xue
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (19) : 1667 - 1670
  • [13] Sparsely Connected CNN for Efficient Automatic Modulation Recognition
    Tunze, Godwin Brown
    Huynh-The, Thien
    Lee, Jae-Min
    Kim, Dong-Seong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 15557 - 15568
  • [14] CTRNet: An Automatic Modulation Recognition Based on Transformer-CNN Neural Network
    Zhang, Wenna
    Xue, Kailiang
    Yao, Aiqin
    Sun, Yunqiang
    ELECTRONICS, 2024, 13 (17)
  • [15] Automatic Modulation Classification Based on Bispectrum and CNN
    Li, Yongbin
    Shao, Gaoping
    Wang, Bin
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 311 - 316
  • [16] Automatic modulation recognition using CNN deep learning models
    Mohsen, Saeed
    Ali, Anas M.
    Emam, Ahmed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7035 - 7056
  • [17] Automatic modulation recognition using CNN deep learning models
    Saeed Mohsen
    Anas M. Ali
    Ahmed Emam
    Multimedia Tools and Applications, 2024, 83 : 7035 - 7056
  • [18] A Deep Neural Network Method For Automatic Modulation Recognition In OFDM With Index Modulation
    Liu, Fang
    Zhou, Yu
    Liu, Yuanan
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [19] CNN-Based Pill Image Recognition for Retrieval Systems
    Al-Hussaeni, Khalil
    Karamitsos, Ioannis
    Adewumi, Ezekiel
    Amawi, Rema M.
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [20] LabVIEW Application for Systems with Automatic Modulation Recognition
    Jurian, Mariana
    Lita, Ioan
    Visan, Daniel Alexandru
    Oprea, Stefan
    Cioc, Ion Bogdan
    2008 31ST INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY: RELIABILITY AND LIFE-TIME PREDICTION, 2008, : 639 - 643