Pre-training neural machine translation with alignment information via optimal transport

被引:0
作者
Su, Xueping [1 ]
Zhao, Xingkai [1 ]
Ren, Jie [1 ]
Li, Yunhong [1 ]
Raetsch, Matthias [2 ]
机构
[1] Xian Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] Reutlingen Univ, Dept Engn, Interact & Mobile Robot & Artificial Intelligence, Reutlingen, Germany
基金
中国国家自然科学基金;
关键词
Optimal Transport; Alignment Information; Pre-training; Neural Machine Translation;
D O I
10.1007/s11042-023-17479-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of globalization, the demand for translation between different languages is also increasing. Although pre-training has achieved excellent results in neural machine translation, the existing neural machine translation has almost no high-quality suitable for specific fields. Alignment information, so this paper proposes a pre-training neural machine translation with alignment information via optimal transport. First, this paper narrows the representation gap between different languages by using OTAP to generate domain-specific data for information alignment, and learns richer semantic information. Secondly, this paper proposes a lightweight model DR-Reformer, which uses Reformer as the backbone network, adds Dropout layers and Reduction layers, reduces model parameters without losing accuracy, and improves computational efficiency. Experiments on the Chinese and English datasets of AI Challenger 2018 and WMT-17 show that the proposed algorithm has better performance than existing algorithms.
引用
收藏
页码:48377 / 48397
页数:21
相关论文
共 50 条
  • [41] PreTraM: Self-supervised Pre-training via Connecting Trajectory and Map
    Xu, Chenfeng
    Li, Tian
    Tang, Chen
    Sun, Lingfeng
    Keutzer, Kurt
    Tomizuka, Masayoshi
    Fathi, Alireza
    Zhan, Wei
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 34 - 50
  • [42] Ensemble and Pre-Training Approach for Echo State Network and Extreme Learning Machine Models
    Tang, Lingyu
    Wang, Jun
    Wang, Mengyao
    Zhao, Chunyu
    ENTROPY, 2024, 26 (03)
  • [43] Moment matching training for neural machine translation: An empirical study
    Nguyen, Long H. B.
    Pham, Nghi T.
    Duc, Le D. C.
    Cong Duy Vu Hoang
    Dien Dinh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 2633 - 2645
  • [44] Adversarial Training for Unknown Word Problems in Neural Machine Translation
    Ji, Yatu
    Hou, Hongxu
    Chen, Junjie
    Wu, Nier
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (01)
  • [45] Effectively training neural machine translation models with monolingual data
    Yang, Zhen
    Chen, Wei
    Wang, Feng
    Xu, Bo
    NEUROCOMPUTING, 2019, 333 : 240 - 247
  • [46] Training with Additional Semantic Constraints for Enhancing Neural Machine Translation
    Ji, Yatu
    Hou, Hongxu
    Chen, Junjie
    Wu, Nier
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2019, 11670 : 300 - 313
  • [47] ZeUS: An Unified Training Framework for Constrained Neural Machine Translation
    Yang, Murun
    IEEE ACCESS, 2024, 12 : 124695 - 124704
  • [48] Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation
    Hao, Bowen
    Zhang, Jing
    Yin, Hongzhi
    Li, Cuiping
    Chen, Hong
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 265 - 273
  • [49] Layer-wise Pre-training Mechanism Based on Neural Network for Epilepsy Detection
    Lin, Zichao
    Gu, Zhenghui
    Li, Yinghao
    Yu, Zhuliang
    Li, Yuanqing
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 224 - 227
  • [50] Neural Networks for Sequential Data: a Pre-training Approach based on Hidden Markov Models
    Pasa, Luca
    Testolin, Alberto
    Sperduti, Alessandro
    NEUROCOMPUTING, 2015, 169 : 323 - 333