Optimizing Perovskite Thin-Film Parameter Spaces with Machine Learning-Guided Robotic Platform for High-Performance Perovskite Solar Cells

被引:21
作者
Zhang, Jiyun [1 ,2 ]
Liu, Bowen [2 ,3 ]
Liu, Ziyi [3 ]
Wu, Jianchang [1 ,2 ]
Arnold, Simon [1 ,2 ,4 ]
Shi, Hongyang [2 ]
Osterrieder, Tobias [1 ]
Hauch, Jens A. [1 ,2 ]
Wu, Zhenni [1 ,2 ]
Luo, Junsheng [3 ]
Wagner, Jerrit [1 ]
Berger, Christian G. [1 ]
Stubhan, Tobias [5 ]
Schmitt, Frederik [1 ]
Zhang, Kaicheng [2 ]
Sytnyk, Mykhailo [1 ]
Heumueller, Thomas [1 ,2 ]
Sutter-Fella, Carolin M. [4 ]
Peters, Ian Marius [1 ]
Zhao, Yicheng [3 ]
Brabec, Christoph J. [1 ,2 ]
机构
[1] Helmholtz Inst Erlangen Nurnberg HI ERN, Dept High Throughput Methods Photovolta, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nuremberg FAU, Fac Engn, Dept Mat Sci Mat Elect & Energy Technol I MEET, D-91058 Erlangen, Germany
[3] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[5] SCIPRIOS GmbH, D-90429 Nurnberg, Germany
关键词
closed-loop optimization; efficient and stable devices; machine learning; manufacturing optimization; perovskite thin films; PL characterization; robotic platform; OPTIMIZATION;
D O I
10.1002/aenm.202302594
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simultaneously optimizing the processing parameters of functional thin films remains a challenge. The design and utilization of a fully automated platform called SPINBOT is presented for the engineering of solution-processed functional thin films. The SPINBOT is capable of performing experiments with high sampling variability through the unsupervised processing of hundreds of substrates with exceptional experimental control. Through the iterative optimization process enabled by the Bayesian optimization (BO) algorithm, the SPINBOT explores an intricate parameter space, continuously improving the quality and reproducibility of the produced thin films. This machine learning (ML)-guided reliable SPINBOT platform enables the acceleration of the optimization process of perovskite solar cells via a simple photoluminescence characterization of films. As a result, this study arrives at an optimal film that, when processed into a solar cell in an ambient atmosphere, immediately yields a champion power conversion efficiency (PCE) of 21.6% with satisfactory performance reproducibility. The unsealed devices retain 90% of their initial efficiency after 1100 h of continuous operation at 60-65 degrees C under metal-halide lamps. It is anticipated that the integration of robotic platforms with the intelligent algorithm will facilitate the widespread adoption of effective autonomous experimentation to address the evolving needs and constraints within the materials science research community. SPINBOT, a fully automated platform, integrates machine learning to optimize solution-processed perovskite thin films. It efficiently explores an intricate multi-dimensional parameter space to produce high-quality and reproducible films. As a result, the optimized film achieves an impressive 21.6% power conversion efficiency in solar cells under ambient conditions, along with excellent long-term stability.image
引用
收藏
页数:9
相关论文
共 51 条
  • [1] Aspuru-Guzik A., MAT ACCELERATION PLA
  • [2] Closed-loop optimization of fast-charging protocols for batteries with machine learning
    Attia, Peter M.
    Grover, Aditya
    Jin, Norman
    Severson, Kristen A.
    Markov, Todor M.
    Liao, Yang-Hung
    Chen, Michael H.
    Cheong, Bryan
    Perkins, Nicholas
    Yang, Zi
    Herring, Patrick K.
    Aykol, Muratahan
    Harris, Stephen J.
    Braatz, Richard D.
    Ermon, Stefano
    Chueh, William C.
    [J]. NATURE, 2020, 578 (7795) : 397 - +
  • [3] How to Make 20% Efficient Perovskite Solar Cells in Ambient Air and Encapsulate Them for 500 h of Operational Stability
    Awais, Muhammad
    Gangadharan, Deepak Thrithamarassery
    Tan, Furui
    Saidaminov, Makhsud I.
    [J]. CHEMISTRY OF MATERIALS, 2022, 34 (18) : 8112 - 8118
  • [4] Reconfigurable system for automated optimization of diverse chemical reactions
    Bedard, Anne-Catherine
    Adamo, Andrea
    Aroh, Kosi C.
    Russell, M. Grace
    Bedermann, Aaron A.
    Torosian, Jeremy
    Yue, Brian
    Jensen, Klavs F.
    Jamison, Timothy F.
    [J]. SCIENCE, 2018, 361 (6408) : 1220 - +
  • [5] On the Use of the Coefficient of Variation as a Measure of Diversity
    Bedeian, Arthur G.
    Mossholder, Kevin W.
    [J]. ORGANIZATIONAL RESEARCH METHODS, 2000, 3 (03) : 285 - 297
  • [6] A mobile robotic chemist
    Burger, Benjamin
    Maffettone, Phillip M.
    Gusev, Vladimir V.
    Aitchison, Catherine M.
    Bai, Yang
    Wang, Xiaoyan
    Li, Xiaobo
    Alston, Ben M.
    Li, Buyi
    Clowes, Rob
    Rankin, Nicola
    Harris, Brandon
    Sprick, Reiner Sebastian
    Cooper, Andrew I.
    [J]. NATURE, 2020, 583 (7815) : 237 - +
  • [7] How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics
    Cao, Bing
    Adutwum, Lawrence A.
    Oliynyk, Anton O.
    Luber, Erik J.
    Olsen, Brian C.
    Mar, Arthur
    Buriak, Jillian M.
    [J]. ACS NANO, 2018, 12 (08) : 7434 - 7444
  • [8] Choi H.C., 2020, IEEE Access, V8
  • [9] A robotic platform for flow synthesis of organic compounds informed by AI planning
    Coley, Connor W.
    Thomas, Dale A., III
    Lummiss, Justin A. M.
    Jaworski, Jonathan N.
    Breen, Christopher P.
    Schultz, Victor
    Hart, Travis
    Fishman, Joshua S.
    Rogers, Luke
    Gao, Hanyu
    Hicklin, Robert W.
    Plehiers, Pieter P.
    Byington, Joshua
    Piotti, John S.
    Green, William H.
    Hart, A. John
    Jamison, Timothy F.
    Jensen, Klavs F.
    [J]. SCIENCE, 2019, 365 (6453) : 557 - +
  • [10] Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing
    Correa-Baena, Juan-Pablo
    Hippalgaonkar, Kedar
    van Duren, Jeroen
    Jaffer, Shaffiq
    Chandrasekhar, Vijay R.
    Stevanovic, Vladan
    Wadia, Cyrus
    Guha, Supratik
    Buonassisi, Tonio
    [J]. JOULE, 2018, 2 (08) : 1410 - 1420