Application of two-dimensional lamellar lithium titanate in lithium-ion anode batteries

被引:4
作者
Hou, Jiyue [1 ]
Yao, Yao [1 ]
Wang, Ying [2 ]
Yang, Wenhao [1 ]
Wang, Fei [1 ]
Dong, Peng [1 ]
Wang, Xin [3 ]
Zhang, Yiyong [1 ]
Li, Xue [1 ]
Zhang, Yingjie [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Natl & Local Joint Engn Res Ctr Lithium ion Batter, Kunming 650093, Peoples R China
[2] Panzhihua Univ, Coll Elect & Informat Engn, Panzhihua 617000, Peoples R China
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
关键词
Lithium-ion battery; Two-dimensional lamellar structure; LI4TI5O12; ANODE; PERFORMANCE; STORAGE; GROWTH;
D O I
10.1016/j.elecom.2023.107588
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium titanate exhibits effective suppression of lithium metal plating and lithium dendrite formation, attributed to its high lithium ion diffusion coefficient and a relatively high discharge plateau of 1.55 V (vs. Li+/Li). It is considered a zero-strain material, displaying minimal lattice size changes during lithium intercalation and deintercalation processes. The focus of this study was to obtain titanium dioxide through the calcination of selected MXene (Ti2C), and then mix it with lithium carbonate in a specific lithium-titanium ratio to generate lithium titanate. Spinel lithium titanate synthesized via solid-state method retained the sheet-like structure and excellent conductivity characteristics of MXene. Because its sheet structure provides a larger specific surface area for the electrode and enhances ion migration, it shows excellent electrochemical performance. The reaction mechanism was studied by in-situ Raman and variable speed CV. It was found that the reaction mechanism was pseudocapacitance plus lithium ion deintercalation. The obtained structure exhibited excellent electrochemical performance, making it suitable for applications in lithium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Gray, Evan
    Li, Sheng
    Qiu, Siyao
    Strounina, Ekaterina
    Sun, Chenghua
    Zhao, Huijun
    Zhang, Shanqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6353 - 6358
  • [22] Evaluation of the electrochemical characteristics of silicon/lithium titanate composite as anode material for lithium ion batteries
    Shi, Jing
    Liang, Yunhui
    Li, Linlin
    Peng, Yi
    Yang, Huabin
    ELECTROCHIMICA ACTA, 2015, 155 : 125 - 131
  • [23] Two dimensional silicon nanowalls for lithium ion batteries
    Wan, Jiayu
    Kaplan, Alex F.
    Zheng, Jia
    Han, Xiaogang
    Chen, Yuchen
    Weadock, Nicholas J.
    Faenza, Nicholas
    Lacey, Steven
    Li, Teng
    Guo, Jay
    Hu, Liangbing
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 6051 - 6057
  • [24] Two-Dimensional Mesoporous Carbon Nanosheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Li, Jili
    Yao, Ruimin
    Bai, Ju
    Cao, Chuanbao
    CHEMPLUSCHEM, 2013, 78 (08): : 797 - 800
  • [25] A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries
    Wolfson, Eric R.
    Xiao, Neng
    Schkeryantz, Luke
    Haug, W. Karl
    Wu, Yiying
    McGrier, Psaras L.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (01) : 97 - 101
  • [26] A two-dimensional MXene/BN van der Waals heterostructure as an anode material for lithium-ion batteries
    Yuan, Kun
    Hao, Pengju
    Zhou, Yang
    Hu, Xianchao
    Zhang, Jianbo
    Zhong, Shengwen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (22) : 13713 - 13719
  • [27] Effect of lithium salt type on silicon anode for lithium-ion batteries
    Lv, Linze
    Wang, Yan
    Huang, Weibo
    Wang, Yueyue
    Zhu, Guobin
    Zheng, Honghe
    ELECTROCHIMICA ACTA, 2022, 413
  • [28] MoSe2 monolayer as a two-dimensional anode material for lithium-ion batteries: A first-principles study
    Liu, Yaning
    Zhang, Xin
    Li, Cong
    Gao, Nan
    Li, Hongdong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 697
  • [29] Si/Cu composite as anode material for lithium-ion batteries
    Zeng, Hong
    He, Yawen
    Chamas, Mohamad
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [30] Fibrous phosphorus: A promising candidate as anode for lithium-ion batteries
    Chen, Zhiyan
    Zhu, Yabo
    Wang, Qingmei
    Liu, Wanying
    Cui, Yuting
    Tao, Xueyu
    Zhang, Dekun
    ELECTROCHIMICA ACTA, 2019, 295 : 230 - 236