ANALYSE-Learning to attack cyber-physical energy systems with intelligent agents

被引:2
作者
Wolgast, Thomas [1 ]
Wenninghoff, Nils [2 ]
Balduin, Stephan [2 ]
Veith, Eric [2 ]
Fraune, Bastian [3 ]
Woltjen, Torben [3 ]
Niesse, Astrid [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Ammerlaender Heerstr 114-118, D-26129 Oldenburg, Germany
[2] OFFIS Inst Informat Technol, Escherweg 2, D-26121 Oldenburg, Germany
[3] City Univ Appl Sci Bremen, Werderstr 73, D-28199 Bremen, Germany
关键词
Reinforcement learning; Vulnerability analysis; PalaestrAI; MIDAS; Cyber attack; Rettij; REPRODUCIBILITY;
D O I
10.1016/j.softx.2023.101484
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The ongoing penetration of energy systems with information and communications technology (ICT) and the introduction of new markets increase the potential for malicious or profit-driven attacks that endanger system stability. To ensure security-of-supply, it is necessary to analyze such attacks and their underlying vulnerabilities, to develop countermeasures and improve system design. We propose ANALYSE, a machine-learning-based software suite to let learning agents autonomously find attacks in cyber-physical energy systems, consisting of the power system, ICT, and energy markets. ANALYSE is a modular, configurable, and self-documenting framework designed to find yet unknown attack types and to reproduce many known attack strategies in cyber-physical energy systems. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 24 条
[1]  
Buchholz S, 2021, INT C WIRTSCHAFTSINF
[2]   Evaluation of Reinforcement Learning-Based False Data Injection Attack to Automatic Voltage Control [J].
Chen, Ying ;
Huang, Shaowei ;
Liu, Feng ;
Wang, Zhisheng ;
Sun, Xinwei .
IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (02) :2158-2169
[3]  
Fischer L, 2018, Arxiv, DOI arXiv:1811.06447
[4]   On Reproducible AI: Towards Reproducible Research, Open Science, and Digital Scholarship in AI Publications [J].
Gundersen, Odd Erik ;
Gil, Yolanda ;
Aha, David W. .
AI MAGAZINE, 2018, 39 (03) :56-68
[5]   Transparency and reproducibility in artificial intelligence [J].
Haibe-Kains, Benjamin ;
Adam, George Alexandru ;
Hosny, Ahmed ;
Khodakarami, Farnoosh ;
Shraddha, Thakkar ;
Kusko, Rebecca ;
Sansone, Susanna-Assunta ;
Tong, Weida ;
Wolfinger, Russ D. ;
Mason, Christopher E. ;
Jones, Wendell ;
Dopazo, Joaquin ;
Furlanello, Cesare ;
Waldron, Levi ;
Wang, Bo ;
McIntosh, Chris ;
Goldenberg, Anna ;
Kundaje, Anshul ;
Greene, Casey S. ;
Broderick, Tamara ;
Hoffman, Michael M. ;
Leek, Jeffrey T. ;
Korthauer, Keegan ;
Huber, Wolfgang ;
Brazma, Alvis ;
Pineau, Joelle ;
Tibshirani, Robert ;
Hastie, Trevor ;
Ioannidis, John P. A. ;
Quackenbush, John ;
Aerts, Hugo J. W. L. .
NATURE, 2020, 586 (7829) :E14-U7
[6]  
Hutson M, 2018, SCIENCE, V359, P725, DOI 10.1126/science.359.6377.725
[7]  
Mohamed AS, 2023, Arxiv, DOI [arXiv:2303.15736, DOI 10.48550/ARXIV.2303.15736]
[8]  
Ni Z., 2017, 2017 IEEE S SERIES C, P1
[9]  
Niehaus F, 2022, INT C CYBER WARFARE, V17, P227, DOI [10.34190/iccws.17.1.44, DOI 10.34190/ICCWS.17.1.44]
[10]  
Rasmussen TB, 2017, 2017 IEEE MANCHESTER POWERTECH