A Cas3-base editing tool for targetable in vivo mutagenesis

被引:22
作者
Zimmermann, Anna [1 ,2 ]
Prieto-Vivas, Julian E. [1 ,2 ]
Cautereels, Charlotte [1 ,2 ]
Gorkovskiy, Anton [1 ,2 ]
Steensels, Jan [1 ,2 ]
Van de Peer, Yves [3 ,4 ,5 ,6 ]
Verstrepen, Kevin J. [1 ,2 ]
机构
[1] VIB KU Leuven Ctr Microbiol, VIB Lab Syst Biol, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Ctr Microbial & Plant Genet, Lab Genet & Genom, Dept M2S, Gaston Geenslaan 1, B-3001 Leuven, Belgium
[3] Univ Ghent, Dept Plant Biotechnol & Bioinformat, Ghent, Belgium
[4] VIB, Ctr Plant Syst Biol, Ghent, Belgium
[5] Univ Pretoria, Dept Biochem Genet & Microbiol, Pretoria, South Africa
[6] Nanjing Agr Univ, Acad Adv Interdisciplinary Studies, Coll Hort, Nanjing 210095, Peoples R China
关键词
ESCHERICHIA-COLI; YARROWIA-LIPOLYTICA; DIRECTED EVOLUTION; GENE-EXPRESSION; DNA; DIVERSITY; EFFICIENT; BASE; CLASSIFICATION; DEGRADATION;
D O I
10.1038/s41467-023-39087-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases. CoMuTER employs the targetable helicase Cas3, signature enzyme of the class 1 type I-E CRISPR-Cas system, fused to a cytidine deaminase to unwind and mutate large stretches of DNA at once, including complete metabolic pathways. The tool increases the number of mutations in the target region 350-fold compared to the rest of the genome, with an average of 0.3 mutations per kilobase. We demonstrate the suitability of CoMuTER for pathway optimization by doubling the production of lycopene in Saccharomyces cerevisiae after a single round of mutagenesis.
引用
收藏
页数:16
相关论文
共 93 条
[1]   In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9 [J].
Alvarez, Beatriz ;
Mencia, Mario ;
de Lorenzo, Victor ;
Fernandez, Luis Angel .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae [J].
Apel, Amanda Reider ;
d'Espaux, Leo ;
Wehrs, Maren ;
Sachs, Daniel ;
Li, Rachel A. ;
Tong, Gary J. ;
Garber, Megan ;
Nnadi, Oge ;
Zhuang, William ;
Hillson, Nathan J. ;
Keasling, Jay D. ;
Mukhopadhyay, Aindrila .
NUCLEIC ACIDS RESEARCH, 2017, 45 (01) :496-508
[3]   The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling [J].
Bankaitis, Vytas A. ;
Mousley, Carl J. ;
Schaaf, Gabriel .
TRENDS IN BIOCHEMICAL SCIENCES, 2010, 35 (03) :150-160
[4]   Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J].
Bao, Zehua ;
HamediRad, Mohammad ;
Xue, Pu ;
Xiao, Han ;
Tasan, Ipek ;
Chao, Ran ;
Liang, Jing ;
Zhao, Huimin .
NATURE BIOTECHNOLOGY, 2018, 36 (06) :505-+
[5]   Exogenous Melatonin Application Delays Senescence and Improves Postharvest Antioxidant Capacity in Blueberries [J].
Li, Jie ;
Wang, Ying ;
Li, Jinying ;
Li, Yanan ;
Lu, Chunze ;
Hou, Zihuan ;
Liu, Haiguang ;
Wu, Lin .
AGRONOMY-BASEL, 2025, 15 (02)
[6]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[7]   Harnessing type I CRISPR-Cas systems for genome engineering in human cells [J].
Cameron, Peter ;
Coons, Mary M. ;
Klompe, Sanne E. ;
Lied, Alexandra M. ;
Smith, Stephen C. ;
Vidal, Bastien ;
Donohoue, Paul D. ;
Rotstein, Tomer ;
Kohrs, Bryan W. ;
Nyer, David B. ;
Kennedy, Rachel ;
Banh, Lynda M. ;
Williams, Carolyn ;
Toh, Mckenzi S. ;
Irby, Matthew J. ;
Edwards, Leslie S. ;
Lin, Chun-Han ;
Owen, Arthur L. G. ;
Kunne, Tim ;
van der Oost, John ;
Brouns, Stan J. J. ;
Slorach, Euan M. ;
Fuller, Chris K. ;
Gradia, Scott ;
Kanner, Steven B. ;
May, Andrew P. ;
Sternberg, Samuel H. .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1471-+
[8]   Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains [J].
Canelas, Andre B. ;
Harrison, Nicola ;
Fazio, Alessandro ;
Zhang, Jie ;
Pitkanen, Juha-Pekka ;
van den Brink, Joost ;
Bakker, Barbara M. ;
Bogner, Lara ;
Bouwman, Jildau ;
Castrillo, Juan I. ;
Cankorur, Ayca ;
Chumnanpuen, Pramote ;
Daran-Lapujade, Pascale ;
Dikicioglu, Duygu ;
van Eunen, Karen ;
Ewald, Jennifer C. ;
Heijnen, Joseph J. ;
Kirdar, Betul ;
Mattila, Ismo ;
Mensonides, Femke I. C. ;
Niebel, Anja ;
Penttila, Merja ;
Pronk, Jack T. ;
Reuss, Matthias ;
Salusjarvi, Laura ;
Sauer, Uwe ;
Sherman, David ;
Siemann-Herzberg, Martin ;
Westerhoff, Hans ;
de Winde, Johannes ;
Petranovic, Dina ;
Oliver, Stephen G. ;
Workman, Christopher T. ;
Zamboni, Nicola ;
Nielsen, Jens .
NATURE COMMUNICATIONS, 2010, 1
[9]   Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity [J].
Charpentier, Emmanuelle ;
Richter, Hagen ;
van der Oost, John ;
White, Malcolm F. .
FEMS MICROBIOLOGY REVIEWS, 2015, 39 (03) :428-441
[10]   Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor [J].
Chen, Haiqi ;
Liu, Sophia ;
Padula, Samuel ;
Lesman, Daniel ;
Griswold, Kettner ;
Lin, Allen ;
Zhao, Tongtong ;
Marshall, Jamie L. ;
Chen, Fei .
NATURE BIOTECHNOLOGY, 2020, 38 (02) :165-+