An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

被引:6
|
作者
Feizmohammadi, Ali [1 ]
Liimatainen, Tony [2 ]
Lin, Yi-Hsuan [3 ]
机构
[1] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[2] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
基金
芬兰科学院;
关键词
Inverse problems; Boundary determination; Semilinear elliptic equation; Riemannian manifold; Conformally transversally anisotropic; Gaussian quasimodes; WKB construction; BOUNDARY-VALUE PROBLEM; CALDERON PROBLEM; GLOBAL UNIQUENESS;
D O I
10.1007/s40818-023-00153-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (- Delta(g) + V)u + qu(2) = 0 on M. We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683-4719, 2020), Lassas et al. (J Math Pures Appl 145:4482, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu(2), and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds
    Ali Feizmohammadi
    Tony Liimatainen
    Yi-Hsuan Lin
    Annals of PDE, 2023, 9
  • [2] Reconstruction in the Calderon problem on conformally transversally anisotropic manifolds
    Feizmohammadi, Ali
    Krupchyk, Katya
    Oksanen, Lauri
    Uhlmann, Gunther
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [3] INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRODINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS
    Krupchyk, Katya
    Uhlmann, Gunther
    ANALYSIS & PDE, 2023, 16 (08): : 1825 - 1868
  • [4] Partial data inverse problems for magnetic Schrodinger operators on conformally transversally anisotropic manifolds
    Selim, Salem
    Yan, Lili
    ASYMPTOTIC ANALYSIS, 2024, 140 (1-2) : 25 - 36
  • [5] Increasing stability of a linearized inverse boundary value problem for a nonlinear Schrödinger equation on transversally anisotropic manifolds
    Lu, Shuai
    Zhai, Jian
    INVERSE PROBLEMS, 2024, 40 (04)
  • [6] LIMITING CARLEMAN WEIGHTS AND CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS
    Angulo, Pablo
    Faraco, Daniel
    Guijarro, Luis
    Salo, Mikko
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (07) : 5171 - 5197
  • [7] On an inverse problem for a fractional semilinear elliptic equation involving a magnetic potential
    Li, Li
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 296 : 170 - 185
  • [8] Recovery of a time-dependent potential in hyperbolic equations on conformally transversally anisotropic manifolds
    Liu, Boya
    Saksala, Teemu
    Yan, Lili
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 123 - 147
  • [9] The Calderon problem in transversally anisotropic geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Salo, Mikko
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2579 - 2626
  • [10] Stability estimate for a semilinear elliptic inverse problem
    Choulli, Mourad
    Hu, Guanghui
    Yamamoto, Masahiro
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (04):