Sea urchins like Na2Ti3O7 as long cycling and high-rate performance anodes for Li-ion batteries

被引:1
作者
Wang, Yi-fan [1 ]
Yu, Hai-tao [1 ]
Yi, Ting-feng [2 ]
He, Fei [3 ]
Xie, Ying [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[3] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Na2Ti3O7; Morphology control; Electrochemical performance; Anode material; SODIUM TITANATE; ENERGY-STORAGE; IN-SITU; LITHIUM; INTERCALATION; NANOSHEETS; COMPOSITE; CAPACITY; CHALLENGES; CONVERSION;
D O I
10.1016/j.matchemphys.2023.127448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to its special Z-shaped layered structure, Na2Ti3O7 has great potential as an anode material for lithium-ion battery application. However, the poor electrical conductivity and cycle life have seriously affected its application in practice. In this paper, we prepared a sea urchin shaped Na2Ti3O7 material by a simple hydrothermal method. This special morphology allows the material to have a large specific surface area, which can better contact with the electrolyte and increase the active site number. The half-cells assembled with sea urchin-like Na2Ti3O7 show excellent cycling performance and good rate performance. After 1000 cycles at a 1 C rate, the specific capacity of NTO maintains at 70%. Even at a 5 C rate, NTO-2 delivers a discharge capacity of 71 mAh g-1 after 1000 cycles. The method proposed can be extended to other new anode materials to boost their electrochemical performances.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Facile synthesis of layered LiV3O8 hollow nanospheres as superior cathode materials for high-rate Li-ion batteries
    Liu, Jun
    Liu, Wei
    Wan, Yanling
    Ji, Shaomin
    Wang, Jinbin
    Zhou, Yichun
    RSC ADVANCES, 2012, 2 (28) : 10470 - 10474
  • [32] Sodium Titanate/Carbon (Na2Ti3O7/C) Nanofibers via Electrospinning Technique as the Anode of Sodium-ion Batteries
    Zou, Wei
    Fan, Cong
    Li, Jingze
    CHINESE JOURNAL OF CHEMISTRY, 2017, 35 (01) : 79 - 85
  • [33] PPy-Encapsulated Na2Li2Ti6O14 Composites as High-Performance Anodes for Li-Ion Battery
    Wang, Fan-Fan
    Zhang, Nan
    Lv, Ze-Chen
    Zhu, Yan-Rong
    Zhang, Jun-Hong
    Yi, Ting-Feng
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2022, 35 (11) : 1873 - 1881
  • [34] Nanostructured 3D Electrode Architectures for High-Rate Li-Ion Batteries
    Haag, Jacob M.
    Pattanaik, Gyanaranjan
    Durstock, Michael F.
    ADVANCED MATERIALS, 2013, 25 (23) : 3238 - 3243
  • [35] Amorphous GeO2@C composite anodes for long cycling stability and performance in Li-ion batteries
    Wang, Guanzheng
    Lei, Huazhi
    Wang, Zheng
    Yuan, Zhentao
    Zhan, Zhaolin
    Li, Lu
    Wang, Xiao
    IONICS, 2024, 30 (02) : 697 - 708
  • [36] Novel high-performance Ga2Te3 anodes for Li-ion batteries
    Lee, Young-Han
    Hwa, Yoon
    Park, Cheol-Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (36) : 20553 - 20564
  • [37] Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries
    Lyu, Zhiyang
    Yang, Lijun
    Xu, Dan
    Zhao, Jin
    Lai, Hongwei
    Jiang, Yufei
    Wu, Qiang
    Li, Yi
    Wang, Xizhang
    Hu, Zheng
    NANO RESEARCH, 2015, 8 (11) : 3535 - 3543
  • [38] Sandwich-like Na2Ti3O7 Nanosheet/Ti3C2 MXene Composite for High-Performance Lithium/Sodium-Ion Batteries
    Luo, Yu
    Zhao, Yuzhuang
    Ma, Jian
    Huang, Yanshan
    Han, Sheng
    Zhou, Mingan
    Lin, Hualin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (43) : 18229 - 18237
  • [39] Li2CuTi3O8-Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries
    Wang, Da
    Xu, Hua-Yun
    Gu, Man
    Chen, Chun-Hua
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) : 50 - 53
  • [40] Self-supported Se-doped Na2Ti3O7 arrays for high performance sodium ion batteries
    Gao, Lin
    Ma, Yanan
    Cao, Minglei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1 - 10