Sea urchins like Na2Ti3O7 as long cycling and high-rate performance anodes for Li-ion batteries

被引:1
|
作者
Wang, Yi-fan [1 ]
Yu, Hai-tao [1 ]
Yi, Ting-feng [2 ]
He, Fei [3 ]
Xie, Ying [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[3] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Na2Ti3O7; Morphology control; Electrochemical performance; Anode material; SODIUM TITANATE; ENERGY-STORAGE; IN-SITU; LITHIUM; INTERCALATION; NANOSHEETS; COMPOSITE; CAPACITY; CHALLENGES; CONVERSION;
D O I
10.1016/j.matchemphys.2023.127448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to its special Z-shaped layered structure, Na2Ti3O7 has great potential as an anode material for lithium-ion battery application. However, the poor electrical conductivity and cycle life have seriously affected its application in practice. In this paper, we prepared a sea urchin shaped Na2Ti3O7 material by a simple hydrothermal method. This special morphology allows the material to have a large specific surface area, which can better contact with the electrolyte and increase the active site number. The half-cells assembled with sea urchin-like Na2Ti3O7 show excellent cycling performance and good rate performance. After 1000 cycles at a 1 C rate, the specific capacity of NTO maintains at 70%. Even at a 5 C rate, NTO-2 delivers a discharge capacity of 71 mAh g-1 after 1000 cycles. The method proposed can be extended to other new anode materials to boost their electrochemical performances.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Carbon nanotube array anodes for high-rate Li-ion batteries
    Zhang, Hao
    Cao, Gaoping
    Wang, Zhiyong
    Yang, Yusheng
    Shi, Zujin
    Gu, Zhennan
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 2873 - 2877
  • [12] Rational Design of Fe2O3 Nanocube-Based Anodes for High-Performance Li-Ion Batteries
    Ganesan, Vinoth
    Park, Cheol-Min
    CHEMISTRYSELECT, 2019, 4 (37): : 11103 - 11109
  • [13] High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
    Chen, Chunhui
    Agrawal, Richa
    Wang, Chunlei
    NANOMATERIALS, 2015, 5 (03): : 1469 - 1480
  • [14] Hierarchically nanorod structured Na2Ti6O13/Na2Ti3O7 nanocomposite as a superior anode for high-performance sodium ion battery
    Chandel, Sakshee
    Lee, Seulgi
    Lee, Seunggyeong
    Kim, Sungjin
    Singh, Satendra Pal
    Kim, Jaekook
    Rai, Alok Kumar
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 877
  • [15] A high-rate capability and energy density sodium ion full cell enabled by F-doped Na2Ti3O7 hollow spheres
    Pan, Du
    Chen, Weixin
    Sun, Shuwei
    Lu, Xia
    Wu, Xiaolei
    Yu, Caiyan
    Hu, Yong-Sheng
    Bai, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (43) : 23232 - 23243
  • [16] Mesoporous Na2Ti3O7 microspheres with rigid framework as anode materials for high-performance sodium ion batteries
    Chen, Si
    Gao, Lin
    Zhang, Lulu
    Yang, Xuelin
    IONICS, 2019, 25 (05) : 2211 - 2219
  • [17] Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries
    Xia, Jiale
    Zhao, Hongyang
    Pang, Wei Kong
    Yin, Zongyou
    Zhou, Bo
    He, Gang
    Guo, Zaiping
    Du, Yaping
    CHEMICAL SCIENCE, 2018, 9 (14) : 3421 - 3425
  • [18] V6O13 nanosheets self-assembled into 3D hollow microflowers for long-life and high-rate Li-ion batteries
    Zhong, Shenglin
    Zou, Zhengguang
    Lv, Sijia
    Zhang, Shuchao
    Geng, Jing
    Meng, Jianying
    Liu, Xin
    Liang, Fangan
    Rao, Jiajie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903
  • [19] Nanocarbon Florets with Synthetically Tunable Porosity as High-Rate Anodes for Li-ion Batteries
    Gupta, Soumyajit
    Thacharakkal, Dipin
    Subramaniam, Chandramouli
    Ramakrishnan, Srinivasan
    ACS APPLIED NANO MATERIALS, 2024, 7 (23) : 27336 - 27343
  • [20] Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries
    Zhang, Biao
    Liu, Yusi
    Huang, Zhendong
    Oh, Seiwoon
    Yu, Yang
    Mai, Yiu-Wing
    Kim, Jang-Kyo
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) : 12133 - 12140