Molten salt synthesis and formation mechanism of Ti3AlC2: A new path from Ti2AlC to Ti3AlC2

被引:7
|
作者
Zhong, Yi [1 ,2 ]
Liu, Ying [1 ]
Jin, Na [1 ]
Lin, Zifeng [1 ]
Ye, Jinwen [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Sch Mat Sci & Engn, Chengdu, Peoples R China
[2] Sichuan Univ, Yibin Ind Technol Res Inst, Yibin R&D Pk, Yibin, Peoples R China
[3] Sichuan Univ, Sch Mat Sci & Engn, Chengdu 610065, Peoples R China
关键词
formation mechanism; max phases; phase transition; synthesis; transmission electron microscopy; MAX-PHASE; CRYSTAL-STRUCTURE; THIN-FILMS; TI; POWDER; AL; TI5AL2C3; MICROSTRUCTURE; OXIDATION; TITANIUM;
D O I
10.1111/jace.19178
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fine, pure Ti3AlC2 powder is prepared in a very mild condition via Ti3Al alloy and carbon black with the assistance of molten salts. X-ray diffraction, scanning electron microscopy, TG-DSC, and transmission electron microscopy (TEM) characterizations show that the high purity, nanosized Ti3AlC2 can be obtained at 900 degrees C with the 1:1 salt-to-material ratio. The formation mechanism of Ti3AlC2 through this strategy of alloy raw material is fully studied under further TEM investigations, showing that the reaction process can basically be described as Ti3Al and C -> TiAl and TiC -> Ti2AlC and TiC -> psi and TiC -> Ti5Al2C3 and TiC -> Ti3AlC2, where the key psi, a modulated Ti2AlC structure, is determined for the first time containing alternate-displacement Al layers along (0 0 0 2) of Ti2AlC phase with a distinct selected area electron diffraction pattern. Such alternant displacement is considered a precondition of forming Ti5Al2C3 through topotactic transition, followed by Ti5Al2C3 converting into Ti3AlC2 by the diffusion of Ti, C atoms in the outside TiC. Several parallel orientations can be observed through the phase transition process: Ti2AlC (0 0 0 2)//psi (0 0 0 1), psi (0 0 0 1)//Ti5Al2C3 (0 0 0 3), Ti5Al2C3 (0 0 0 3)//Ti3AlC2 (0 0 0 2). Such parallel orientations among these phases apply an ideal condition for the topotactic reaction. The distinct path of the phase transition brings a significant change of heat effect compared with the traditional method, leading to a fast reaction rate and a mild reaction condition.
引用
收藏
页码:5567 / 5579
页数:13
相关论文
共 50 条
  • [41] Formation mechanism of Ti3AlC2 in TiO2-Al-C/TiC systems at high temperatures
    Liu, Gengfu
    Li, Yawei
    Fan, Lixia
    Nath, Mithun
    Xu, Yibiao
    Liu, Jun
    CERAMICS INTERNATIONAL, 2022, 48 (02) : 2614 - 2624
  • [42] Synthesis of Ti3AlC2 MAX Phase in KBr Protective Melt
    Nagornov, I. A.
    Sapronova, V. M.
    Gorobtsov, Ph. Y.
    Mokrushin, A. S.
    Simonenko, N. P.
    Simonenko, E. P.
    Kuznetsov, N. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (14) : 2184 - 2192
  • [43] Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti
    Zhu, M.
    Wang, R.
    Chen, C.
    Zhang, H. B.
    Zhang, G. J.
    CERAMICS INTERNATIONAL, 2017, 43 (07) : 5708 - 5714
  • [44] Deposition and characterization of phase-pure Ti2AlC and Ti3AlC2 coatings by DC magnetron sputtering with cost-effective targets
    Li, Yueming
    Zhao, Guorui
    Qian, Yuhai
    Xu, Jingjun
    Li, Meishuan
    VACUUM, 2018, 153 : 62 - 69
  • [45] Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene
    Roslyk, Iryna
    Baginskiy, Ivan
    Zahorodna, Veronika
    Gogotsi, Oleksiy
    Ippolito, Stefano
    Gogotsi, Yury
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (04) : 2605 - 2612
  • [46] Preparation of Ti2AlC and Ti3AlC2 MAX Phases by Self-Propagating High-Temperature Synthesis with the Reduction Stage
    V. I. Vershinnikov
    D. Yu. Kovalev
    Russian Journal of Non-Ferrous Metals, 2020, 61 : 554 - 558
  • [47] An experimental approach to delineate the reaction mechanism of Ti3AlC2 MAX-Phase formation
    Yunus, Mohammad
    Maji, Bikas C.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (08) : 3131 - 3145
  • [48] Structural inheritance and difference between Ti2AlC, Ti3AlC2 and Ti5Al2C3 under pressure from first principles
    Gao, Qing-He
    Du, An
    Yang, Ze-Jin
    MODERN PHYSICS LETTERS B, 2017, 31 (03):
  • [49] Fabrication of Ti3AlC2 ceramic material by mechanical alloying
    Guo Shibo
    Kang Qiping
    Liu Jun
    Qu Xuanhui
    RARE METALS, 2010, 29 (04) : 376 - 379
  • [50] Reaction mechanism for the synthesis of Ti3AlC2 through an intermediate carbide of Ti3AlC from elemental Ti, Al, and C powder mixture
    Yoshida, Michiyuki
    Hoshiyama, Yasuhiro
    Ommyoji, Junji
    Yamaguchi, Akira
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2010, 118 (1373) : 37 - 42