Molten salt synthesis and formation mechanism of Ti3AlC2: A new path from Ti2AlC to Ti3AlC2

被引:6
|
作者
Zhong, Yi [1 ,2 ]
Liu, Ying [1 ]
Jin, Na [1 ]
Lin, Zifeng [1 ]
Ye, Jinwen [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Sch Mat Sci & Engn, Chengdu, Peoples R China
[2] Sichuan Univ, Yibin Ind Technol Res Inst, Yibin R&D Pk, Yibin, Peoples R China
[3] Sichuan Univ, Sch Mat Sci & Engn, Chengdu 610065, Peoples R China
关键词
formation mechanism; max phases; phase transition; synthesis; transmission electron microscopy; MAX-PHASE; CRYSTAL-STRUCTURE; THIN-FILMS; TI; POWDER; AL; TI5AL2C3; MICROSTRUCTURE; OXIDATION; TITANIUM;
D O I
10.1111/jace.19178
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fine, pure Ti3AlC2 powder is prepared in a very mild condition via Ti3Al alloy and carbon black with the assistance of molten salts. X-ray diffraction, scanning electron microscopy, TG-DSC, and transmission electron microscopy (TEM) characterizations show that the high purity, nanosized Ti3AlC2 can be obtained at 900 degrees C with the 1:1 salt-to-material ratio. The formation mechanism of Ti3AlC2 through this strategy of alloy raw material is fully studied under further TEM investigations, showing that the reaction process can basically be described as Ti3Al and C -> TiAl and TiC -> Ti2AlC and TiC -> psi and TiC -> Ti5Al2C3 and TiC -> Ti3AlC2, where the key psi, a modulated Ti2AlC structure, is determined for the first time containing alternate-displacement Al layers along (0 0 0 2) of Ti2AlC phase with a distinct selected area electron diffraction pattern. Such alternant displacement is considered a precondition of forming Ti5Al2C3 through topotactic transition, followed by Ti5Al2C3 converting into Ti3AlC2 by the diffusion of Ti, C atoms in the outside TiC. Several parallel orientations can be observed through the phase transition process: Ti2AlC (0 0 0 2)//psi (0 0 0 1), psi (0 0 0 1)//Ti5Al2C3 (0 0 0 3), Ti5Al2C3 (0 0 0 3)//Ti3AlC2 (0 0 0 2). Such parallel orientations among these phases apply an ideal condition for the topotactic reaction. The distinct path of the phase transition brings a significant change of heat effect compared with the traditional method, leading to a fast reaction rate and a mild reaction condition.
引用
收藏
页码:5567 / 5579
页数:13
相关论文
共 50 条
  • [31] Synthesis of High Pure Ti3AlC2 and Ti2AlC Powders from TiH2 Powders as Ti Source by Tube Furnace
    李良
    周爱国
    XU Lin
    LI Zhengyang
    WANG Libo
    Journal of Wuhan University of Technology(Materials Science), 2013, (05) : 882 - 887
  • [32] Synthesis of high pure Ti3AlC2 and Ti2AlC powders from TiH2 powders as Ti source by tube furnace
    Liang Li
    Aiguo Zhou
    Lin Xu
    Zhengyang Li
    Libo Wang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 882 - 887
  • [33] 燃烧温度对燃烧合成Ti3AlC2和Ti2AlC的影响
    郭俊明
    陈克新
    刘光华
    周和平
    宁晓山
    功能材料, 2004, (06) : 763 - 765+768
  • [34] On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with pure sodium at 550 °C and 750 °C
    Bentzel, G. W.
    Ghidiu, M.
    Griggs, J.
    Lang, A.
    Barsoum, M. W.
    CORROSION SCIENCE, 2016, 111 : 568 - 573
  • [35] Influence of selective laser treatment on thermal stability of Ti3AlC2 and Ti3AlC2/Cu powders
    Krinitcyn, M.
    Ragulina, M.
    Firsina, I
    Travitzky, N.
    MATERIALS LETTERS, 2022, 309
  • [36] Anisotropic arc erosion resistance of Ag/Ti3AlC2 composites induced by the alignment of Ti3AlC2
    Wang, Dan Dan
    Tian, Wu Bian
    Ding, Jian Xiang
    Ma, Ai Bin
    Zhu, Yong Fa
    Zhang, Pei Gen
    He, Wei
    Sun, Zheng Ming
    CORROSION SCIENCE, 2020, 171
  • [37] On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with silicon carbide and pyrolytic carbon at 1300 °C
    Bentzel, G. W.
    Ghidiu, M.
    Anasori, B.
    Barsoum, M. W.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (15) : 4107 - 4114
  • [38] Formation mechanism of ternary carbide Ti3AlC2 by combustion synthesis
    Ge, ZB
    Chen, KX
    Guo, JM
    Zhou, HP
    Ning, XS
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (02) : 427 - 432
  • [39] Effect of Ti3AlC2 Content on Electrical Friction and Wear Behaviors of Cu–Ti3AlC2 Composites
    Hao Zhao
    Yi Feng
    Gang Qian
    Xiaochen Huang
    Shenshen Guo
    Xiaoyan Sun
    Tribology Letters, 2019, 67
  • [40] Effect of Ti3AlC2 Content on Mechanical Properties of Ti3AlC2/ZA27 Composites
    Li Haiyan
    Zhou Yang
    Cui Ao
    Li Shibo
    Huang Zhenying
    Zhai Hongxiang
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (04) : 1069 - 1074