Performance optimization of In(Ga)As quantum dot intermediate band solar cells

被引:9
作者
Yang, Guiqiang [1 ,2 ]
Liu, Wen [1 ,2 ]
Bao, Yidi [1 ,2 ]
Chen, Xiaoling [1 ,2 ]
Ji, Chunxue [1 ,2 ]
Wei, Bo [1 ,3 ]
Yang, Fuhua [1 ,2 ]
Wang, Xiaodong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
[4] Beijing Engn Res Ctr Semicond Micronano Integrated, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
In(Ga)As quantum dot; Intermediate band solar cell; Strain; Thermal excitation; Carrier lifetime; OPTICAL-PROPERTIES; VOLTAGE RECOVERY; EFFICIENCY; LAYER; ABSORPTION; DEVICES; STRAIN;
D O I
10.1186/s11671-023-03839-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dot intermediate band solar cell (QD-IBSC) has high efficiency theoretically. It can absorb photons with energy lower than the bandgap of the semiconductor through the half-filled intermediate band, extending the absorption spectrum of the cell. However, issues in the IBSC, such as the strain around multi-stacking QDs, low thermal excitation energy, and short carrier lifetime, lead to its low conversion efficiency. In recent years, many efforts have been made from different aspects. In this paper, we focus on In(Ga)As QD-IBSC, list the experimental technologies used to improve the performance of the cell and review the recent research progress. By analyzing the effects of different technologies on conversion efficiency, the development direction of the In(Ga)As QD-IBSC in the future is proposed.
引用
收藏
页数:14
相关论文
共 50 条
[32]   Numerical simulation of QD-intermediate band solar cells: effect of dot size on performance [J].
Bald, Timothy ;
Fedoseyev, Alexander .
PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES, 2012, 8256
[33]   Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays [J].
Tomic, Stanko .
PHYSICAL REVIEW B, 2010, 82 (19)
[34]   Improved quantum dot stacking for intermediate band solar cells using strain compensation [J].
Simmonds, Paul J. ;
Sun, Meng ;
Laghumavarapu, Ramesh Babu ;
Liang, Baolai ;
Norman, Andrew G. ;
Luo, Jun-Wei ;
Huffaker, Diana L. .
NANOTECHNOLOGY, 2014, 25 (44)
[35]   AN EQUIVALENT CIRCUIT MODEL PROPOSED FOR THE INTERMEDIATE BAND NANOSTRUCTURED QUANTUM DOT SOLAR CELLS [J].
Houshmand, Mohammad ;
Zandi, Mohammad H. ;
Dehkordi, Somayeh S. ;
Perez, Mauricio D. ;
Gorji, Nima E. .
MODERN PHYSICS LETTERS B, 2012, 26 (21)
[36]   Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals [J].
Zhang, Qiubo ;
Wei, Wensheng .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (01) :75-82
[37]   Transition Rate in the InGaN Quantum Dot Intermediate-Band Solar Cell [J].
Wang, Kuang-Chung ;
Wu, Yuh-Renn .
2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, :822-825
[38]   InGaN Quantum Dot Superlattices as Ratchet Band Solar Cells [J].
Robichaud, Luc ;
Krich, Jacob J. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (02) :474-482
[39]   Band filling effects on temperature performance of intermediate band quantum wire solar cells [J].
Kunets, Vas. P. ;
Furrow, C. S. ;
Ware, M. E. ;
de Souza, L. D. ;
Benamara, M. ;
Mortazavi, M. ;
Salamo, G. J. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)
[40]   Enhancing intermediate band solar cell performances through quantum engineering of dot states by droplet epitaxy [J].
Scaccabarozzi, Andrea ;
Vichi, Stefano ;
Bietti, Sergio ;
Cesura, Federico ;
Aho, Timo ;
Guina, Mircea ;
Cappelluti, Federica ;
Acciarri, Maurizio ;
Sanguinetti, Stefano .
PROGRESS IN PHOTOVOLTAICS, 2023, 31 (06) :637-644