Experimental and numerical study of curvature effects and NO formation in ammonia Bunsen flames

被引:9
作者
Chen, Jun [1 ]
Fan, Weidong [1 ]
Zhang, Hai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia combustion; Bunsen flame; Flame structure; Curvature effects; NO formation; LAMINAR BURNING VELOCITY; PREMIXED FLAMES; EMISSION CHARACTERISTICS; MARKSTEIN LENGTH; MIXTURES; HYDROGEN; AIR; AERODYNAMICS; TEMPERATURE; PROPAGATION;
D O I
10.1016/j.fuel.2023.128207
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Analysis of ammonia Bunsen flame is meaningful for understanding ammonia combustion details and solving the two major problems, the poor combustion characteristics and the severe NO emission. In the present work, ammonia Bunsen flames with equivalence ratio from 0.9 to 1.2 were successfully achieved at an elevated preheat temperature, 873 K, using an elevated-preheat-temperature jet flame facility. Detailed simulations were con- ducted using the CFD method combined with a chemical kinetic model. A good agreement was achieved between the calculated flames and the experimental flame images. The strong effects of curvature at the flame tip were revealed both experimentally and numerically, which were consistent with the literature data. In the lean Bunsen flame, curvature inhibits combustion, while, in the stoichiometric or rich flames, curvature enhances combus- tion. Based on the calculated flames, comparison of the detailed flame structures between the tip and the planar portion was conducted and the mechanism of the curvature effects was uncovered, which were closely related to the H2 transport characteristics. Besides, NO formation was investigated and a strong dependence on the local combustion intensity and atmosphere was observed. In stoichiometric and rich flames, two specific NO peaks were uncovered at the flame tip and on the base, respectively.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Laminar flame speed measurements of ethylene at high preheat temperatures and for diluted oxidizers [J].
Adusumilli, Sampath ;
Seitzman, Jerry .
COMBUSTION AND FLAME, 2021, 233
[2]   Structure of premixed ammonia plus air flames at atmospheric pressure: Laser diagnostics and kinetic modeling [J].
Brackmann, Christian ;
Alekseev, Vladimir A. ;
Zhou, Bo ;
Nordstrom, Emil ;
Bengtsson, Per-Erik ;
Li, Zhongshan ;
Alden, Marcus ;
Konnov, Alexander A. .
COMBUSTION AND FLAME, 2016, 163 :370-381
[3]   Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants [J].
Cesaro, Zac ;
Ives, Matthew ;
Nayak-Luke, Richard ;
Mason, Mike ;
Banares-Alcantara, Rene .
APPLIED ENERGY, 2021, 282
[4]   Contribution of curvature to flame-stretch effects on premixed flames [J].
Choi, CW ;
Puri, IK .
COMBUSTION AND FLAME, 2001, 126 (03) :1640-1654
[5]   Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures [J].
Choi, Sun ;
Lee, Seungro ;
Kwon, Oh Chae .
ENERGY, 2015, 85 :503-510
[6]   Experimental and numerical analysis of the autoignition behavior of NH3 and NH3/H2 mixtures at high pressure [J].
Dai, Liming ;
Gersen, Sander ;
Glarborg, Peter ;
Levinsky, Howard ;
Mokhov, Anatoli .
COMBUSTION AND FLAME, 2020, 215 :134-144
[7]   Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures [J].
Dong, Chen ;
Zhou, Qulan ;
Zhao, Qinxin ;
Zhang, Yaqing ;
Xu, Tongmo ;
Hui, Shien .
FUEL, 2009, 88 (10) :1858-1863
[8]   Characteristics of NH3/H2/air flames in a combustor fired by a swirl and bluff-body stabilized burner [J].
Franco, Miguel C. ;
Rocha, Rodolfo C. ;
Costa, Mario ;
Yehia, Mohamed .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) :5129-5138
[9]   Modeling nitrogen chemistry in combustion [J].
Glarborg, Peter ;
Miller, James A. ;
Ruscic, Branko ;
Klippenstein, Stephen J. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 67 :31-68
[10]   The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames [J].
Han, Xinlu ;
Wang, Zhihua ;
He, Yong ;
Liu, Yingzu ;
Zhu, Yanqun ;
Konnov, Alexander A. .
COMBUSTION AND FLAME, 2020, 217 :314-320