Superior Strong and Tough Nacre-Inspired Materials by Interlayer Entanglement

被引:18
作者
Wang, Lidan [1 ]
Wang, Bo [1 ]
Wang, Ziqiu [1 ]
Huang, Jiajing [2 ]
Li, Kaiwen [1 ]
Liu, Senping [1 ]
Lu, Jiahao [1 ]
Han, Zhanpo [1 ]
Gao, Yue [1 ]
Cai, Gangfeng [1 ]
Liu, Yingjun [1 ,4 ]
Chen, Yan [3 ]
Lin, Yue [2 ,5 ,6 ]
Liu, Yilun [3 ]
Gao, Chao [1 ,4 ]
Xu, Zhen [1 ,4 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Fujian, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Aerosp, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[4] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030032, Shanxi, Peoples R China
[5] Fujian Inst Res Struct Matter, Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Sci & Technol Innovat Lab Optoelect Informa, R China, R China, Fuzhou 350002, Fuzhou 350108, Fujian, Peoples R China
[6] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
interlayer entanglement; nacre-inspired; energy dissipation; toughening mechanism; ultrahigh molecular weight; GRAPHENE OXIDE; BIOINSPIRED DESIGN; ULTRA-STRONG; ULTRASTRONG; FIBERS; NANOCOMPOSITES; POLYMERS; STRENGTH; FRACTURE; FATIGUE;
D O I
10.1021/acs.nanolett.3c00332
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.
引用
收藏
页码:3352 / 3361
页数:10
相关论文
共 65 条
[61]   Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening [J].
Zhang, Yuanyuan ;
Li, Yuchen ;
Ming, Peng ;
Zhang, Qi ;
Liu, Tianxi ;
Jiang, Lei ;
Cheng, Qunfeng .
ADVANCED MATERIALS, 2016, 28 (14) :2834-2839
[62]   Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide [J].
Zhao, Xiaoli ;
Xu, Zhen ;
Zheng, Bingna ;
Gao, Chao .
SCIENTIFIC REPORTS, 2013, 3
[63]   Fracture and fatigue of entangled and unentangled polymer networks [J].
Zheng, Dongchang ;
Lin, Shaoting ;
Ni, Jiahua ;
Zhao, Xuanhe .
EXTREME MECHANICS LETTERS, 2022, 51
[64]   Bioinspired MXene/polyurethane plastic films with exceptional flexibility and toughness for electromagnetic interference shielding [J].
Zhou, Jiahua ;
Shi, Dongjian ;
Wang, Yi ;
Chen, Mingqing ;
Dong, Weifu .
MATERIALS RESEARCH BULLETIN, 2022, 154
[65]   Thermodynamic and Structural Insights into Nanocomposites Engineering by Comparing Two Materials Assembly Techniques for Graphene [J].
Zhu, Jian ;
Zhang, Huanan ;
Kotov, Nicholas A. .
ACS NANO, 2013, 7 (06) :4818-4829