Distributing Multipartite Entanglement over Noisy Quantum Networks

被引:27
作者
Bugalho, Luis [1 ,2 ,3 ]
Coutinho, Bruno C. [4 ]
Monteiro, Francisco A. [4 ,5 ]
Omar, Yasser [1 ,2 ,3 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[2] Ctr Fis Engn Mat Avancados CeFEMA, Phys Informat & Quantum Technol Grp, CeFEMA, Lisbon, Portugal
[3] Portuguese Quantum Inst, PQI, Lisbon, Portugal
[4] Inst Telecomunicacoes, Lisbon, Portugal
[5] Inst Univ Lisboa, ISCTE, Lisbon, Portugal
来源
QUANTUM | 2023年 / 7卷
关键词
ALGORITHM; STATE;
D O I
10.22331/q-2023-02-09-920
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum internet aims at harnessing networked quantum technologies, namely by distributing bipartite entanglement be-tween distant nodes. However, multipar-tite entanglement between the nodes may empower the quantum internet for addi-tional or better applications for commu-nications, sensing, and computation. In this work, we present an algorithm for generating multipartite entanglement be-tween different nodes of a quantum net-work with noisy quantum repeaters and imperfect quantum memories, where the links are entangled pairs. Our algorithm is optimal for GHZ states with 3 qubits, maximising simultaneously the final state fidelity and the rate of entanglement dis-tribution. Furthermore, we determine the conditions yielding this simultaneous opti-mality for GHZ states with a higher num-ber of qubits, and for other types of mul-tipartite entanglement. Our algorithm is general also in the sense that it can op-timize simultaneously arbitrary parame-ters. This work opens the way to opti-mally generate multipartite quantum cor-relations over noisy quantum networks, an important resource for distributed quan-tum technologies.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Faithful entanglement distribution using quantum multiplexing in noisy channel
    Zhao, Peng
    Zhou, Lan
    Zhong, Wei
    Sheng, Yu-Bo
    EPL, 2021, 135 (04)
  • [22] Quantum teleportation, entanglement, and Bell nonlocality in correlated noisy channels
    Wang, Zhan-Yun
    Qin, Zhi-Yong
    LASER PHYSICS, 2020, 30 (05)
  • [23] Scalable characterization of localizable entanglement in noisy topological quantum codes
    Amaro, David
    Mueller, Markus
    Pal, Amit Kumar
    NEW JOURNAL OF PHYSICS, 2020, 22 (05):
  • [24] Analysis of multipartite entanglement distribution using a central quantum-network node
    Avis, Guus
    Rozpedek, Filip
    Wehner, Stephanie
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [25] Parametrized multipartite entanglement measures
    Li, Hui
    Gao, Ting
    Yan, Fengli
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [26] Effect of weak measurement on entanglement distribution over noisy channels
    Wang, Xin-Wen
    Yu, Sixia
    Zhang, Deng-Yu
    Oh, C. H.
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Dynamics of Quantum Networks in Noisy Environments
    Zhang, Chang-Yue
    Zheng, Zhu-Jun
    Fei, Shao-Ming
    Feng, Mang
    ENTROPY, 2023, 25 (01)
  • [28] Experimental realization of multipartite entanglement via quantum Fisher information in a uniform antiferromagnetic quantum spin chain
    Mathew, George
    Silva, Saulo L. L.
    Jain, Anil
    Mohan, Arya
    Adroja, D. T.
    Sakai, V. G.
    Tomy, C., V
    Banerjee, Alok
    Goreti, Rajendar
    Aswathi, V. N.
    Singh, Ranjit
    Jaiswal-Nagar, D.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [29] Strong entanglement distribution of quantum networks
    Yang, Xue
    Yan-Han Yang
    Ming-Xing Luo
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [30] Genuine multipartite entanglement in the XY model
    Giampaolo, S. M.
    Hiesmayr, B. C.
    PHYSICAL REVIEW A, 2013, 88 (05):