Nitrogen-doped carbon sponge derived from the self-assembly of poly(amic acid) for high performance oxygen reduction reaction

被引:5
|
作者
Sun, Hui [1 ]
Jin, Kai [1 ]
Li, Xiao [1 ]
Wang, Tian [2 ]
Lai, Xiaoyong [1 ]
机构
[1] Ningxia Univ, Sch Chem & Chem Engn, State Key Lab High Efficiency Coal Utilizat & Gree, Yinchuan 750021, Peoples R China
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
TOTAL-ENERGY CALCULATIONS; POROUS CARBON; ELECTROCATALYSTS; CATALYSTS; METALS; ORIGIN; SITES;
D O I
10.1039/d2nj05652f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped carbon materials with highly porous structures and interconnected ultrathin frameworks have shown outstanding features for electrocatalytic applications. Herein, we propose a self-assembly strategy to prepare nitrogen-doped carbon sponge (NCS) with high porosity, an ultrathin framework, and a high content of active nitrogen species for high performance oxygen reduction reaction (ORR) by direct pyrolysis of the polymeric precursor. Amphiphilic poly(amic acid) (PAA) can self-assemble into a highly porous sponge-like structure (donated as PAA sponge). After pyrolysis, the high porosity and ultrathin framework of the PAA sponge are well inherited. The nitrogen species in the PAA sponge convert to pyridinic and graphitic nitrogen when pyrolyzed at 800 degrees C to give NCS-800, corresponding to an atomic percent of 4.6%, which are believed to be the origin of ORR catalytic activity. The NCS-800 shows high catalytic performance toward the ORR and superior methanol tolerance and long-term stability in comparison to Pt/C. After 30 hours, the relative current density is still as high as 92.4%, which is much higher than that of Pt/C (73.7%). This strategy can be extended to facilely prepare doped carbon materials with tailored morphologies and heteroatom species by choosing appropriate monomers from the abundant library of diamines and dianhydrides.
引用
收藏
页码:3297 / 3305
页数:9
相关论文
共 50 条
  • [1] Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media
    Choi, Chang Hyuck
    Chung, Min Wook
    Kwon, Han Chang
    Chung, Jae Hoon
    Woo, Seong Ihl
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 144 : 760 - 766
  • [2] Highly porous layered carbon nanocomposites from the self-assembly of a poly(amic acid) for efficient oxygen reduction reaction catalysis
    Tong, Jinhua
    Sun, Hui
    JOURNAL OF POWER SOURCES, 2024, 613
  • [3] Self-Assembly of Nitrogen-doped Graphene-Wrapped Carbon Nanoparticles as an Efficient Electrocatalyst for Oxygen Reduction Reaction
    Ma, Ruguang
    Zhou, Yao
    Li, Pengxi
    Chen, Yongfang
    Wang, Jiacheng
    Liu, Qian
    ELECTROCHIMICA ACTA, 2016, 216 : 347 - 354
  • [4] Nitrogen-doped carbon with a high degree of graphitization derived from biomass as high-performance electrocatalyst for oxygen reduction reaction
    Zhao, Jujiao
    Liu, Yanming
    Quan, Xie
    Chen, Shuo
    Yu, Hongtao
    Zhao, Huimin
    APPLIED SURFACE SCIENCE, 2017, 396 : 986 - 993
  • [5] Napkin Paper Derived Nitrogen-Doped Carbon Sheets: A High-Performance Electrocatalyst for Oxygen Reduction Reaction
    Yuan, Wenjing
    Chen, Ping
    Xie, Anjian
    Li, Shikuo
    Huang, Fangzhi
    Shen, Yuhua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) : H1204 - H1209
  • [6] High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction
    Zhao, Songlin
    Chen, Fushan
    Zhang, Qunfeng
    Meng, Lingtao
    RSC ADVANCES, 2021, 11 (47) : 29555 - 29563
  • [7] Nitrogen-doped Porous Carbon Derived from Chitin with Enhanced Performances for Oxygen Reduction Reaction and Supercapacitor
    Yao, Lei
    Zhong, Wenhua
    Qiu, Lei
    Deng, Libo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 5798 - 5809
  • [8] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Wang, Shenggao
    Wang, Xujie
    Deng, Quanrong
    Mao, Yangwu
    Wang, Geming
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (07) : 6608 - 6616
  • [9] Facile Preparation of Cobalt Nanoparticles Encapsulated Nitrogen-Doped Carbon Sponge for Efficient Oxygen Reduction Reaction
    Leng, Ying
    Jin, Kai
    Wang, Tian
    Sun, Hui
    POLYMERS, 2023, 15 (03)
  • [10] Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media
    Li, Jianpeng
    Wang, Shuguang
    Ren, Yaqi
    Ren, Zhonghua
    Qiu, Yejun
    Yu, Jie
    ELECTROCHIMICA ACTA, 2014, 149 : 56 - 64