In vivo protein-based biosensors: seeing metabolism in real time

被引:9
|
作者
Alexandrov, Kirill [1 ,2 ]
Vickers, Claudia E. [1 ,2 ,3 ,4 ]
机构
[1] Queensland Univ Technol, ARC Ctr Excellence Synthet Biol, Ctr Agr & Bioecon,Sch Biol & Environm Sci, Ctr Genom & Personalised Hlth,CSIRO QUT Synthet Bi, Brisbane, Qld 4001, Australia
[2] Commonwealth Sci & Ind Res Org CSIRO, CSIRO Future Sci Platform Synthet Biol, Dutton Pk, Brisbane, Qld 4012, Australia
[3] Eden Brew, Brisbane, Qld 4001, Australia
[4] Griffith Univ, Griffith Inst Drug Discovery, Brisbane, Qld 4111, Australia
基金
澳大利亚研究理事会;
关键词
FLUORESCENT; DESIGN; ENZYMES; EVOLUTION;
D O I
10.1016/j.tibtech.2022.07.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biological homeostasis is a dynamic and elastic equilibrium of countless interlinked biochemical reactions. A key goal of life sciences is to understand these dynamics; bioengineers seek to reconfigure such networks. Both goals require the ability to monitor the concentration of individual intracellular metabo-lites with sufficient spatiotemporal resolution. To achieve this, a range of protein or protein/DNA signalling circuits with optical readouts have been constructed. Protein biosensors can provide quantitative information at subsecond temporal and suborganelle spatial resolution. However, their construction is fraught with difficulties related to integrating the affinity-and selectivity-endowing com-ponents with the signal reporters. We argue that development of efficient approaches for construction of chemically induced dimerisation systems and reporter domains with large dynamic ranges will solve these problems.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 50 条
  • [31] Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants
    Ray, Shamayeeta
    Panjikar, Santosh
    Anand, Ruchi
    ACS SENSORS, 2018, 3 (09): : 1632 - 1638
  • [32] Recent Progress in Design of Protein-Based Fluorescent Biosensors and Their Cellular Applications
    Tamura, Tomonori
    Hamachi, Itaru
    ACS CHEMICAL BIOLOGY, 2014, 9 (12) : 2708 - 2717
  • [33] Fluorescence Correlation Spectroscopy to Monitor Kai Protein-based Circadian Oscillations in Real Time
    Goda, Kazuhito
    Ito, Hiroshi
    Kondo, Takao
    Oyama, Tokitaka
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (05) : 3241 - 3248
  • [34] Applications of protein-based capacitive Biosensors for the detection of heavy-metal ions
    Mortari, Alessia
    Browns, Nigel L.
    Geczy, Carolyn
    Coster, Hans G. L.
    Valenzuela, Stella M.
    Martin, Donald
    Csoregi, Elisabeth
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 304 - +
  • [35] Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes
    Siontorou, Christina G.
    Georgopoulos, Konstantinos N.
    Nikoleli, Georgia-Paraskevi
    Nikolelis, Dimitrios P.
    Karapetis, Stefanos K.
    Bratakou, Spyridoula
    MEMBRANES, 2016, 6 (03)
  • [36] Fluorescent Protein-based Biosensors to Visualize Signal Transduction beneath the Plasma Membrane
    Fujioka, Yoichiro
    Nanbo, Asuka
    Nishide, Shin-ya
    Ohba, Yusuke
    ANALYTICAL SCIENCES, 2015, 31 (04) : 267 - 274
  • [37] A general strategy to red-shift green fluorescent protein-based biosensors
    Zhang, Shen
    Ai, Hui-wang
    NATURE CHEMICAL BIOLOGY, 2020, 16 (12) : 1434 - +
  • [38] STOCHASTIC MODELING AND SIGNAL PROCESSING OF NANO-SCALE PROTEIN-BASED BIOSENSORS
    Monfared, Sahar M.
    Krishnamurthy, Vikram
    Cornell, Bruce
    2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 154 - +
  • [39] Principles and applications of green fluorescent protein-based biosensors: a mini-review
    Tian, Fengxia
    Xu, Guangling
    Zhou, Suo
    Chen, Shuchang
    He, Dongmei
    ANALYST, 2023, 148 (13) : 2882 - 2891
  • [40] Self-complementing split fluorescent protein-based biosensors for calcium ion
    Yamaguchi, Issei
    Nasu, Yusuke
    Terai, Takuya
    Campbell, Robert E.
    PROTEIN SCIENCE, 2023, 32