Imaging and Hemodynamic Characteristics of Vulnerable Carotid Plaques and Artificial Intelligence Applications in Plaque Classification and Segmentation

被引:12
|
作者
Han, Na [1 ,2 ,3 ]
Ma, Yurong [1 ,2 ]
Li, Yan [4 ]
Zheng, Yu [1 ,2 ,3 ]
Wu, Chuang [1 ,2 ]
Gan, Tiejun [1 ,2 ]
Li, Min [1 ,2 ]
Ma, Laiyang [1 ,2 ,3 ]
Zhang, Jing [1 ,2 ]
机构
[1] Lanzhou Univ, Dept Magnet Resonance, Hosp 2, Lanzhou 730030, Peoples R China
[2] Gansu Prov Clin Res Ctr Funct & Mol Imaging, Lanzhou 730030, Peoples R China
[3] Lanzhou Univ, Clin Sch 2, Lanzhou 730030, Peoples R China
[4] Lanzhou Univ, Sch Math & Stat, Lanzhou 730030, Peoples R China
基金
中国国家自然科学基金;
关键词
vulnerable plaque; VW-HRMRI; 4D flow; artificial intelligence; stroke; WALL SHEAR-STRESS; EXPERT CONSENSUS RECOMMENDATIONS; ARTERY WALL; ATHEROSCLEROTIC PLAQUE; INTRAPLAQUE HEMORRHAGE; PROGRESSION; ULCERATION; STENOSIS; STROKE; MRI;
D O I
10.3390/brainsci13010143
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Stroke is a massive public health problem. The rupture of vulnerable carotid atherosclerotic plaques is the most common cause of acute ischemic stroke (AIS) across the world. Currently, vessel wall high-resolution magnetic resonance imaging (VW-HRMRI) is the most appropriate and cost-effective imaging technique to characterize carotid plaque vulnerability and plays an important role in promoting early diagnosis and guiding aggressive clinical therapy to reduce the risk of plaque rupture and AIS. In recent years, great progress has been made in imaging research on vulnerable carotid plaques. This review summarizes developments in the imaging and hemodynamic characteristics of vulnerable carotid plaques on the basis of VW-HRMRI and four-dimensional (4D) flow MRI, and it discusses the relationship between these characteristics and ischemic stroke. In addition, the applications of artificial intelligence in plaque classification and segmentation are reviewed.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] MRI Plaque Imaging Detects Carotid Plaques with a High Risk for Future Cerebrovascular Events in Asymptomatic Patients
    Esposito-Bauer, Lorena
    Saam, Tobias
    Ghodrati, Iman
    Pelisek, Jaroslav
    Heider, Peter
    Bauer, Matthias
    Wolf, Petra
    Bockelbrink, Angelina
    Feurer, Regina
    Sepp, Dominik
    Winkler, Claudia
    Zepper, Peter
    Boeckh-Behrens, Tobias
    Riemenschneider, Matthias
    Hemmer, Bernhard
    Poppert, Holger
    PLOS ONE, 2013, 8 (07):
  • [42] Associations Between Carotid Artery Plaque Burden, Plaque Characteristics, and Cardiovascular Events The ARIC Carotid Magnetic Resonance Imaging Study
    Brunner, Gerd
    Virani, Salim S.
    Sun, Wensheng
    Liu, Li
    Dodge, Rhiannon C.
    Nambi, Vijay
    Coresh, Josef
    Mosley, Thomas H.
    Sharrett, A. Richey
    Boerwinkle, Eric
    Ballantyne, Christie M.
    Wasserman, Bruce A.
    JAMA CARDIOLOGY, 2021, 6 (01) : 79 - 86
  • [43] Imaging of the Vulnerable Carotid Plaque: Biological Targeting of Inflammation in Atherosclerosis using Iron Oxide Particles and MRI
    Chan, J. M. S.
    Monaco, C.
    Wylezinska-Arridge, M.
    Tremoleda, J. L.
    Gibbs, R. G. J.
    EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2014, 47 (05) : 462 - 469
  • [44] Impact of plaque haemorrhage and its age on structural stresses in atherosclerotic plaques of patients with carotid artery disease: an MR imaging-based finite element simulation study
    Sadat, Umar
    Teng, Zhongzhao
    Young, Victoria E.
    Zhu, Chengcheng
    Tang, Tjun Y.
    Graves, Martin J.
    Gillard, Jonathan H.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2011, 27 (03) : 397 - 402
  • [45] Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications
    Saba, Luca
    Saam, Tobias
    Jager, H. Rolf
    Yuan, Chun
    Hatsukami, Thomas S.
    Saloner, David
    Wasserman, Bruce A.
    Bonati, Leo H.
    Wintermark, Max
    LANCET NEUROLOGY, 2019, 18 (06) : 559 - 572
  • [46] 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0
    Skandha, Sanagala S.
    Gupta, Suneet K.
    Saba, Luca
    Koppula, Vijaya K.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sfikakis, Petros P.
    Protogerou, Athanasios
    Misra, Durga P.
    Agarwal, Vikas
    Sharma, Aditya M.
    Viswanathan, Vijay
    Rathore, Vijay S.
    Turk, Monika
    Kolluri, Raghu
    Viskovic, Klaudija
    Cuadrado-Godia, Elisa
    Kitas, George D.
    Nicolaides, Andrew
    Suri, Jasjit S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 125
  • [47] Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment
    Jain, Pankaj K.
    Sharma, Neeraj
    Kalra, Mannudeep K.
    Johri, Amer
    Saba, Luca
    Suri, Jasjit S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [48] Unseen Artificial Intelligence-Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study
    Jain, Pankaj K.
    Sharma, Neeraj
    Saba, Luca
    Paraskevas, Kosmas I.
    Kalra, Mandeep K.
    Johri, Amer
    Laird, John R.
    Nicolaides, Andrew N.
    Suri, Jasjit S.
    DIAGNOSTICS, 2021, 11 (12)
  • [49] Emerging artificial intelligence applications in liver magnetic resonance imaging
    Hill, Charles E.
    Biasiolli, Luca
    Robson, Matthew D.
    Grau, Vicente
    Pavlides, Michael
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (40) : 6825 - 6843
  • [50] Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging
    Pellat, Anna
    Barat, Maxime
    Coriat, Romain
    Soyer, Philippe
    Dohan, Anthony
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) : 24 - 36